Abitur-Musteraufgaben Beschreiben und Begründen (Pflichtteil) ab 2019

Lösung M01

Lösung einfach:

Die Ebene F liegt in der Mitte der gegebenen Ebenen E_1 mit $ax_1 + bx_2 + cx_3 = d_1$ und E_2 mit $ax_1 + bx_2 + cx_3 = d_2$

Die Ebene F hat dann die Gleichung $ax_1 + bx_2 + cx_3 = \frac{d_1 + d_2}{2}$.

Lösung umständlich (Vorschlag des Kultusministeriums BW):

- Man wählt beliebige Punkte P_1 auf E_1 und P_2 auf E_2
- Man bestimmt den Mittelpunkt M der Strecke $\overline{P_1P_2}$.
- Mit einem Normalenvektor \vec{n} der Ebenen E_1 und E_2 erhält man die Normalengleichung für die gesuchte Ebene $F: (\vec{x} \overrightarrow{OM}) \circ \vec{n} = 0$.

Lösung M02

- Man wählt einen beliebigen Punkt P auf E
- Man bestimmt den Einheitsvektor des Normalenvektors $\frac{1}{|\vec{n}|} \cdot \vec{n}$.
- Man bestimmt einen Punkt Q und R mit Abstand 3 zu P über: $\overrightarrow{OQ} = \overrightarrow{OP} + \frac{3}{|\vec{n}|} \cdot \vec{n}$ bzw. $\overrightarrow{OR} = \overrightarrow{OP} \frac{3}{|\vec{n}|} \cdot \vec{n}$
- Damit erhält man die Normalengleichung(en) für die gesuchte(n) Ebene(n) $F_1: (\vec{x} \overrightarrow{OQ}) \circ \vec{n} = 0$ bzw. $F_2: (\vec{x} \overrightarrow{OR}) \circ \vec{n} = 0$.

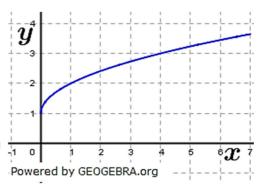
Lösung M03

- Man stellt die Parametergleichung der Ebene E auf, in der das Parallelogramm ABCD liegt mit $E: \vec{x} = \overrightarrow{OA} + r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC}$
- Wir machen eine Punktprobe mit P in E.
- Erfüllt der Punkt P die Ebenengleichung, so liegt P in E.
- Ist zusätzlich noch 0 < r; s < 1, so liegt P innerhalb des Parallelogramms.

Lösung M04

- a) f(x) > 0 Das Schaubild verläuft nur oberhalb der x-Achse.
 - f'(x) > 0 Das Schaubild ist streng monoton steigend.
 - f''(x) < 0 Das Schaubild ist rechtsgekrümmt.
- b) $f''(x) < 0 \Rightarrow (f'(x))' < 0 \Rightarrow \text{der Graph}$ der ersten Ableitung ist streng monoton fallend.

Das Schaubild einer Funktion, deren Steigung durchwegs abnimmt, ist rechtsgekrümmt.

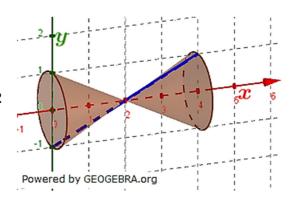


Pflichtteilaufgaben zu Beschreiben - Verstehen - Begründen ösungen

Abitur-Musteraufgaben Beschreiben und Begründen (Pflichtteil) ab 2019

Lösung M05

Die Funktionsgleichung des Integranden mit $g(x)=\frac{1}{2}x-1$ ist eine Gerade. Diese rotiert im Intervall I=[0;4] um die x-Achse. Dabei entsteht ein Doppelkegel mit einem Grundkreisradius von r=1 und der Höhe h=2 bei beiden Kegeln.



Lösung M06

Bernoulliexperiment mit Stichprobenumfang n=15 und p=0.6 für Erfolg. A: "Bei 15 Wiederholungen höchstens 12 Mal Erfolg haben."

Lösung M07

- Man bildet eine Gerade g mit dem Aufpunkt P und dem Normalenvektor \vec{n} von E als Richtungsvektor.
- Man schneidet die Gerade g mit der Ebene E und erhält den Lotfußpunkt L.
- Die Koordinaten des Spiegelpunktes P' erhält man dann über: $\overrightarrow{OP^*} = \overrightarrow{OP} + 2 \cdot \overrightarrow{PL}$.

Lösung M08

- a) Mit der Gleichung $-\frac{x^3}{3} + 3x^2 8x + \frac{13}{3} = 0$ berechnet man die Nullstellen von f. Aus der Graphik lesen wir ab, dass nur eine Nullstelle existiert.
- b) Aus der Graphik erkennen wir, dass die gegebene Funktion insgesamt drei Funktionswerte –2 besitzt. Verschieben wir die Funktion um 2 Stellen nach oben, entstehen dadurch 3 Nullstellen.

$$q = -\frac{x^3}{3} + 3x^2 - 8x + \frac{13}{3} + 2$$

$$q = -\frac{x^3}{3} + 3x^2 - 8x + \frac{19}{3}$$

Lösung M09

- a) Wegen x^2 hat das Schaubild der gegebenen Funktion bei $x_0=0$ eine doppelte Nullstelle. Keine der Abbildungen 2 bis 4 verfügt dort über diese doppelte Nullstelle.
- b) Bild 4 ist das Schaubild der Funktion f'. f hat bei x=0 und x=-3 Extremstellen. Extremstellen führen in der Ableitung zu Nullstellen. Dies ist nur bei Bild 4 der Fall.
 - Bild 2 ist das Schaubild der Funktion F. Wendepunkte einer Funktion führen zu Extremstellen in der Ableitung. F hat bei x=0 und x=-3 Extremstellen, Bild 1 mit dem Schaubild der Ableitung von F hat dort Extremstellen.
 - Bild 3 ist das Schaubild der Funktion g mit einer Polstelle bei $x_0=0$.

Abitur-Musteraufgaben Beschreiben und Begründen (Pflichtteil) ab 2019

Lösung M10

 $\int_0^{120} k(t) dt$ bedeutet im Sachzusammenhang die Gesamtkosten des Unternehmens von 120 Tagen seit dem 1. Januar 2015.

 $\frac{1}{120}\int_0^{120}k(t)\,dt$ sind dann die Durchschnittskosten der ersten 120 Tage pro Tag.

Lösung M11

Die Gerade h hat denselben Aufpunkt wie die Gerade g.

Der Richtungsvektor von g sei \vec{u} , der von h sei \vec{v} .

Für den Richtungsvektor \vec{v} muss gelten, dass er sowohl orthogonal zum Vektor \vec{u} als auch zum Normalenvektor $\overrightarrow{n_E}$ stehen muss.

Über die beiden Bedingungen $\vec{v} \cdot \vec{u} = 0$ und $\vec{v} \cdot \vec{n_E} = 0$ lässt sich \vec{v} bestimmen.

Lösung M12

- a) Gegeben sind die Gerade g und eine Ebene E mit $2x_1 x_2 + 4x_3 3 = 0$. Die Gerade g wird mit E geschnitten, gesucht ist der Schnittpunkt von g mit E.
- b) $2 \cdot (4+r) (3+4r) + 4(-2+2r) 3 = 0$ 8+2r-3-4r-8+8r-3=06r-6=0

$$r = 1$$

$$\overrightarrow{OS} = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 0 \end{pmatrix}$$

g schneidet E in S(5|7|0)

