Pflichtteilaufgaben zum grafischen Differenzieren und Integrieren

Lösungen

Abituraufgaben grafisches Differenzieren und Integrieren (Pflichtteil) ab 2019 Lösungshinweise für alle Aufgaben

Aufgaben zum grafischen Differenzieren bzw. Integrieren lösen wir mithilfe der sogenannten

Differenzieren							^
	F(x)	N_{VZW}	E	W			
	f(x)		N_{VZW}	Ε	W		
₩	f'(x)			N_{VZW}	Ε	W	Integrieren

 N_{VZW} = Nullstelle mit Vorzeichenwechsel, E = Extremstelle, W = Wendestelle F(x)=Stammfunktion, f(x)=1. Ableitung von F, f'(x)=2. Ableitung von FWeiterhin gilt:

- Verläuft f oberhalb der x-Achse, so ist F streng monoton steigend.
- Verläuft f unterhalb der x-Achse, so ist F streng monoton fallend.
- Ist f' negativ, so ist F rechtsgekrümmt.
- Ist f' positiv, so ist F linksgekrümmt.

Lösung A04/2019

- Graph I ist der Graph der Ableitungsfunktion von f. f hat bei x = -2 einen Hochpunkt und bei x = 2 einen Tiefpunkt. Dies führt in der Ableitungsfunktion zu Nullstellen mit VZW und zwar bei x = -2 von "+" nach " – " und bei x = 2 von " – " nach " + ". Somit scheidet Abbildung II aus. Die Steigung im Wendepunkt von f bei x = 0 ist größer als -1. Somit scheidet auch Abbildung III aus.
- b) Die Funktion *F* ist im Intervall [1; 3] streng monoton fallend, da der Graph von f in diesem Intervall unterhalb der x-Achse verläuft.

Lösung A04/2019N

- (1) Die Aussage ist falsch. f hat bei etwa $x_0 = -0.3$ eine Nullstelle mit VZW von "-" nach "+". Damit hat F an dieser Stelle einen Tiefpunkt.
 - (2) Die Aussage ist richtig. f(4) = 2 (aus Grafik abgelesen). Bei $x_0 = 2$ hat f(4) = 2negative Steigung, also f'(2) < 0.
- $g(x) = x^2 \cdot f(x)$ b)

Für g'(x) wird Produktregel benötigt.

$$u = x^{2}$$

$$v = f(x)$$

$$y' = f'(x)$$

$$g'(x) = 2x \cdot f(x) + x^{2} \cdot f'(x)$$

$$f(1) = 2; f'(1) = 0$$

$$g'(1) = 2 \cdot 1 \cdot 2 + 1^{2} \cdot 0 = 4$$

<u>Lösung A05/2020</u>

- Nullstellen von *f*:
 - $x_1 = 1; \ x_2 = 3$
- $\int_{1}^{2} f(x) dx = F(2) F(1) = 1 3 = -2$ b)
- Die Funktion f ist streng monoton fallend, wenn f'(x) < 0 ist für $0.5 \le x \le 1.5$. Wegen F''(x) = f'(x) ist zu begründen, dass F''(x) < 0 ist für $0.5 \le x \le 1.5$. Dies ist dann der Fall, wenn das Schaubild von F rechtgekrümmt ist. Dies ist in dem Intervall $0.5 \le x \le 1.5$ der Fall.
 - (C) by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium