
 

 

Abituraufgaben Analytische Geometrie Wahlteil 2006 BW 
 

Lösung B1.1  
Lösungslogik 
a) Koordinatengleichung der Ebene �: 
 Wir bilden den Normalenvektor der Ebene über das Kreuzprodukt der 

Vektoren �������� und �������� und machen dann eine Punktprobe mit �. 
 Gleichschenkliges Dreieck ���: 
 Für das Dreieck muss gelten, dass nur zwei der Strecken ��, �� bzw. �� 

gleich lang sind. 
 Koordinaten von � für Viereck ���� als Raute: 
 Über die Linearkombination  �������� 	 �������� 
 �������� 
 ��������. 
 Koordinaten des Diagonalschnittpunktes � der Raute: 
 Dies ist die Streckenmitte des Vektors �������� bzw. ���������  
 ��������� 	 �
 ��������� 
 ��������� 	 �
 ��������� 
 ����������  
b) Volumen der Pyramide: 
 Berechnung über das Spatprodukt, siehe Klausuraufschrieb. 
 Volumen des eingeschriebenen Kreiskegels: 
 Die Situation ergibt sich aus 

nebenstehender Grafik. Wegen der 
räumlichen Darstellung, fallen der 
Punkt � und � in der Grafik 
zusammen. 

 Der Grundkreis des Kreiskegels liegt in 
der Raute. Der Radius des Kreiskegels 
ist der Abstand des Punktes � von z.B. 
der Strecke ��. Berechnung des 
Volumens über ������ 	 ����
�  

 
 
 
 
 
 
Klausuraufschrieb 
a) Koordinatengleichung der Ebene �: 

 � ∙ ������� 	 �������� � �������� 	 � 1 48 # � �
 744 # 	 �

 48 60 24# 	  12�
452# 		⟹		������� 	 �452#  

 �:			4,� 
 5,
 
 2,� 	 -  
 �:			4 ∙ 3 
 5 ∙ 5 
 2 ∙ / 40 	 -	 ⟹ 			- 	 29  | Punktprobe mit � 
 �:			4,� 
 5,
 
 2,� 	 29  
 Gleichschenkliges Dreieck ���: 

 2��������2 	 3� 1 48 #3 	 9;				 2��������2 	 3�
 744 #3 	 9;				2���������2 	 3�

 88 4#3 	 12  
 Wegen 2��������2 	 2��������2 5 2���������2 ist das Dreieck ��� gleichschenklig und nicht 

gleichseitig. 
  



 

 

Abituraufgaben Analytische Geometrie Wahlteil 2006 BW 
   Koordinaten von � für Viereck ���� als Raute: 

 �������� 	 �������� 
 �������� 
 �������� 	 � 35 4# 
 �
1 48 # 
 �

 744 # 	 �
 358 #  

 Der Punkt � hat die Koordinaten �/ 3|5|80  
 Koordinaten des Diagonalschnittpunktes � der Raute: 

 ��������� 	 �
 ��������� 
 ��������� 	 �
7� 35 4# 
 �
 358 #8 	 �

052# 
 Die Koordinaten des Diagonalenschnittpunkts sind �/0|5|20. 
b) Volumen der Pyramide: 
 Das Volumen einer 4–seitigen Pyramide bestimmt sich aus dem dritten Teil 

des Spatproduktes aus zwei Grundseitenvektoren (�������� und ��������) und dem 
Seitenkantenvektor (��������). 

 �9:; 	 �� ∙ 2��������� � ��������� ∘ ��������2; 					�������� � �������� 	 � 48 60 24# (sieheTeilaufgabe a)) 

 �9:; 	 �� ∙ 3� 48 60 24# ∘ �
51010#3 	 �� ⋅ | 240  600  240| 	 �� ∙ 1080 	 360  

 Das Volumen der Pyramide beträgt 360		��. 
 

 Alternativ: 

 In der Volumenformel einer Pyramide �9:; 	 �� ∙ > ∙ � ist � der senkrechte 

Abstand der Pyramidenspitze zur Grundfläche. Die Ebenengleichung ist in 
Teilaufgabe a) bereits erstellt, der Abstand von � zu � errechnet sich über 
die HNF. 

 � 	 |?∙@AB∙�BA
∗DE
F|√�DA
BA? 	 FH√?B 	 2 ∙ √45. 
 Die Grundfläche ist gleich dem Betrag des Kreuzproduktes von 

 �������� � �������� 	 � 48 60 24#. 
 > 	 3� 48 60 24#3 	 I/ 120
 ∙ /4
 
 5
 
 2
0 	 12 ⋅ √45   
 Somit erhalten wir �9:; 	 �� ∙ 12 ∙ √45 ∙ 2 ∙ √45 	 8 ∙ 45 	 360. 
 Es geht aber noch umständlicher: 

 Die Grundfläche der Pyramide ist eine Raute. Die Fläche einer Raute 
errechnet sich aus �JKLM� 	 �
 ∙ N ∙ O mit N und O als den Diagonallängen, also 

�JKLM� 	 �
 ∙ 2��������2 ∙ 2���������2 	 �
 ∙ 3� 6012#3 ∙ 3�
 88 4#3 	 �
 ∙ √180 ∙ 12 	 6 ∙ √4 ∙ 45  

 �JKLM� 	 12 ∙ √45. 
 Entscheiden Sie selbst, welchen Lösungsweg Sie wählen. 
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   Volumen des eingeschriebenen Kegels: 
 ���� 	 �� ∙ � ∙ �
 ∙ �  
 � ist der Radius des Grundkreises. � ist der 

senkrechte Abstand der Kegelspitze zum Grundkreis. 
Die Situation der Grundfläche ergibt sich aus 
nebenstehender Grafik. Der Radius des 
„einbeschriebenen“ Grundkreises ist der kürzeste 
Abstand des bereits ermittelten Schnittpunktes � der 
beiden Diagonalen von den Seitenkanten der Raute. 
Wir können ���� berechnen über den Abstand des 
Punktes � von der Geraden durch � und �. 

 PQR:		,� 	 �������� 
 � ∙ �������� 	 � 35 4# 
 � ∙ �
1 48 # ; 		� ∈ 		T  

 Für die Abstandsberechnung führen wir hier 
keinesfalls die umständliche Rechenweise über eine 
Hilfsebene durch � mit dem Richtungsvektor von PQR 
als Normalenvektor aus. Wir verwenden die einfache 
Abstandsformel eines Punktes zu einer Geraden: 

 - 	 29U9V�����������;WX��������22;WX��������2   Hieraus ergibt sich: 

 ���� 	 3QY��������� �E?@ #3
3� �E?@ #3

	 3�E�HD #��
�E?@ #3√@� 	 3�
?�H�
#3F 	 √�D
HF 	 √@�∙
HF 	 √20 	 2 ∙ √5   

 Für die Höhe � müssen wir den Abstand des Punktes � von der Ebene � über 
die HNF ermitteln. Dies ist zuvor unter „alternativ“ für die Pyramide bereits 
geschehen, wir haben � 	 2 ∙ √45 festgestellt. Somit ergibt sich für das 
Volumen des Kegels: 

 ���� 	 �� ∙ � ∙ �2 ⋅ √5�
 ∙ 2 ∙ √45 	 ?H� ∙ � ∙ √45 	 40�√5 	 281  
 Das Volumen des eingeschriebenen Kegels beträgt 281	��. 
 

Lösung B1.2 
Klausuraufschrieb 
In einem regelmäßigen Sechseck sind die 
sechs Innendreiecke, die von den Diagonalen 
gebildet werden, gleichseitige Dreiecke. Somit 
ist z. B. die Strecke �� doppelt so lang wie die 
Seite ��. 
Unter Anwendung des 2. Strahlensatzes 
können wir also bilden: RZZ[ 	 \ZZQ 	 R\Q[ 	 �
  
Die Strecken �� und �� teilen sich im 
Verhältnis 1:2 
Die Berechnung über eine Linearkombination 
zweier Vektoren ist hier aufwändig und 
fehleranfällig und soll deshalb hier nicht näher 
erläutert werden. 
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Lösung B2 
Lösungslogik 
a) Spitze � der ursprünglichen 

Pyramide: 
 Nachweis, dass � der Schnittpunkt 

der Geraden durch � und �∗ sowie � und �∗ ist. 
 Koordinaten von �∗: 
 Für �∗ muss gelten, dass die ,�–

Koordinate gleich groß mit den  ,�–Koordinaten von �∗, �∗ bzw. �∗, 
also ,�]∗ 	 20 sein muss. Der Punkt  

liegt auf der Geraden durch � und �. 
 Zeichnung in Koordinatensystem: 

Siehe Grafik rechts. 
b) Flächeninhalt von ���∗�∗: 
 Wir untersuchen zunächst die Form 

der Fläche ���∗�∗. Es zeigt sich, 
dass die Fläche ein nicht 
gleichschenkliges Trapez ist. Die 
Berechnung der Fläche erfolgt dann 
über die Trapezformel. 

 Überhang der Wand ���∗�∗ nach 
außen: 

 Die Wand ���∗�∗ hängt dann über, 
wenn der Lotfußpunkt der zum 
Viereck ���� orthogonalen 
Geraden durch den Punkt � 
außerhalb des Vierecks liegt. 

 Die ,�–Koordinaten der Punkte �, �, � und � sind alle gleich 0, d.h., der 

Normalenvektor der Ebene, in der die Grundfläche liegt ist �^����� 	 �001#. 
Klausuraufschrieb 
a) Spitze � der ursprünglichen Pyramide: 

 PQQ∗:		,� 	 � ∙ � 4120#  
 PRR∗: ,� 	 �660# 
 _ ∙ �

1 220#  
 PQQ∗ ⋅∩ PRR∗  
 � ∙ � 4120#  _ ∙ �

1 220# 	 �
660#  

 Die Lösung des LGS mit dem GTR führt zu � 	 2 und _ 	 2. 
 �������� 	 2 ∙ � 4120# 	 �

8240#  
 Die Spitze hat die Koordinaten �/8|2|400.  q.e.d. 
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   Koordinaten von �∗: 
 Dieser Punkt liegt auf der Geraden durch � und � und hat die ,�–Koordinate 20. 
 P[Z: ,� 	 � 840 # 
 a ∙ �

16 240#  
 ,� 	 20 	 40a	 ⟹ 			a 	 0,5  
 ��∗��������� 	 � 840 # 
 0,5 ∙ �

16 240# 	 �
0320#  

 Der Punkt hat die Koordinaten �∗/0|3|200  
b) Flächeninhalt der Wand ���∗�∗: 
 �������� 	 �660# 	 6 ∙ �

110# ;					�∗�∗���������� 	 �330# 	 3 ∙ �
110#  

 �������� ∥ �∗�∗����������  
 2��������2 	 √72;					 2�∗�∗����������2 	 √18  
 2��������2 5 2�∗�∗����������2 	⟹  Das Viereck ���∗�∗ ist ein Trapez. 

 �d;Ke�f 	 �
 ∙ �2��������2 
 2�∗�∗����������2� ⋅ �  
 Die Höhe � ist gleich dem Abstand des Punktes �∗ von der Geraden durch � 

und �. 

 � 	 2QR�������QQ∗���������22QR������2 	 3�DDH#��
?�
H#3√g
 	 3� �
HE�
HE�@ #3√g
 	 √
F�
?D∙√
 	 D∙√@HFD∙√
 	 √@HF√
   

 �d;Ke�f 	 �
 ∙ �6√2 
 3√2� ⋅ √@HF√
 	 4,5√2 ⋅ √@HF√
 	 4,5 ∙ √809 	 128  
 Die Fläche der Wand ���∗�∗ beträgt 128	h
. 
 Überhang der Wand ���∗�∗: 
 Die Grundfläche liegt in der ,�,
–Ebene. Der Normalenvektor ist �^����� 	 �001#. 
 Gleichung der Gerade durch � orthogonal zur Grundfläche: 

 PZi:		,� 	 � 8240# 
 a ∙ �
001#  

 Der Lotfußpunkt ist gleich dem Spurpunkt der Geraden mit der ,�,
–Ebene. 
 ,� 	 0 	 40 
 a ⟹ 			a 	  40  
 �j������ 	 � 8240#  40 ∙ �

001# 	 �
820# ⟹ 		j/8|2|00  

 Aus der Grafik erkennen wir, dass dieser Punkt nicht innerhalb des Vierecks ���� liegt, also hängt die Wand ���∗�∗ über0. 


