Abituraufgaben Leistungskurs Wahlteile nach Jahren

Abitur Leistungskurs Wahlteil Analytische Geometrie 2022 BW

Aufgabe B1

Für $k \in \mathbb{R}$ mit $0 < k \le 6$ werden die Pyramiden ABCD mit A(0|0|0), B(4|0|0), C(0|4|0) und $D_k(0|0|k)$ betrachtet (siehe Abbildung)

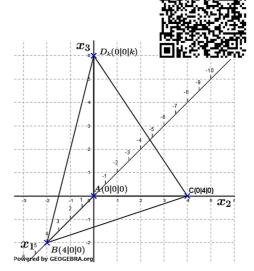
a) Begründen Sie, dass das Dreieck BCD_k gleichschenklig ist.

Der Mittelpunkt der Strecke BC ist M(2|2|0).

$$|\overrightarrow{MD_k}| = \begin{pmatrix} -2 \\ -2 \\ k \end{pmatrix}|$$
 ist die Länge einer Höhe des

Dreiecks BCD_k .

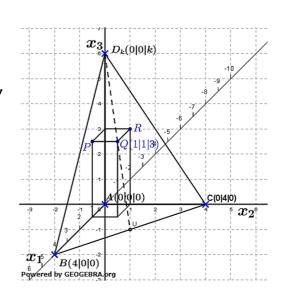
Bestimmen Sie den Flächeninhalt des Dreiecks BCD_k .



Für jeden Wert von k liegt die Seitenfläche BCD_k in der Ebene

$$L_k$$
: $k \cdot x_1 + k \cdot x_2 + 4x_3 = 4k$.

- b) Ermitteln Sie denjenigen Wert von k, für den die Größe des Winkels, unter dem die x_3 -Achse die Ebene L_k schneidet, 30 ° beträgt.
- Zusätzlich zu den Pyramiden wird c) der in der Abbildung 2 gezeigte Quader betrachtet. Die Punkte A und Q(1|1|3) sind Eckpunkte des Quaders, die Seitenfläche des Quaders sind parallel zu den Koordinatenebenen. Für k = 6 enthält die Seitenfläche BCD_k der Pyramide den Eckpunkt Q des Quaders. Für kleinere Werte von k schneidet die Seitenfläche BCDk den Quader in einem Vieleck. Für einen Wert von k verläuft die Seitenfläche BCDk durch die Eckpunkte P und R des Quaders. Bestimmen Sie diesen Wert von k.

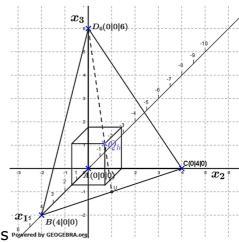


Geben Sie in Abhängigkeit von k die Anzahl der Eckpunkte des Vielecks an, in dem die Seitenfläche BCD_k den Quader schneidet.

Abituraufgaben Leistungskurs Wahlteile nach Jahren

Abitur Leistungskurs Wahlteil Analytische Geometrie 2022 BW

d) Nun wird die Pyramide $ABCD_6$, d.h. diejenige für k=6, betrachtet. Dieser Pyramide werden Quader einbeschrieben (vgl. Abbildung 3). Die Grundflächen der Quader liegen in der x_1x_2 -Ebene, haben den Eckpunkt A gemeinsam und sind quadratisch. Die Höhe h der Quader durchläuft alle reellen Werte mit 0 < h < 6. Für jeden Wert von h liegt der Eckpunkt Q_h in der Seitenfläche BCD_6 der Pyramide.



Ermitteln Sie die Koordinaten des Punktes Q_h .

Aufgabe B2

Gegeben sind die Geradenschar g_a : $\vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + t \cdot \begin{pmatrix} a \\ 3 \\ -1 \end{pmatrix}$; a; $t \in \mathbb{R}$.

und die Gerade h: $\vec{x} = \begin{pmatrix} 1 \\ -6 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$; $s \in \mathbb{R}$

a) Beschreiben Sie die besondere Lage der Gerade h im Koordinatensystem.

Zeigen Sie, dass die Gerade h zur Schar g_a gehört.

Alle Geraden der Schar g_a liegen in einer Ebene $\it E$. Bestimmen Sie eine Koordinatengleichung der Ebene $\it E$.

(Teilergebnis: *E*: $x_2 + 3x_3 = -6$)

b) Bestimmen Sie denjenigen Wert von a, für den g_a die x_2 -Achse schneidet.

Es gibt zwei Geraden der Schar g_a , die die Gerade h im Winkel $45\,^\circ$ schneiden. Ermitteln Sie die zugehörigen Werte von a.

c) Bestimmen Sie eine Gleichung einer Gerade, die von allen Geraden der Schar g_a den Abstand $\sqrt{40}$ besitzt und zu allen Geraden der Schar g_a windschief verläuft.