RS-Abschlussaufgaben Wahlteil

zu Funktionen (Gerade, Parabel)

Realschulabschluss Funktionen (Gerade, Parabel) (Wahlteil B) ab 2021

Dokument mit 8 Aufgaben

Aufgabe B1b/2021

Die Punkte A(1|-8) und B(3|-8) liegen auf einer nach oben geöffneten Normalparabel p.

• Geben Sie die Funktionsgleichung der Parabel p in der Normalform $y = x^2 + bx + c$ an.

Die Schnittpunkte der Parabel p mit der x-Achse und die Punkte A und B bilden ein Viereck.

• Berechnen Sie die Flächeninhalt dieses Vierecks.

Die Geraden g und h verlaufen jeweils auf den Diagonalen des Vierecks. Sie schneiden sich im Punk Q.

• Berechnen Sie Koordinaten des Schnittpunktes Q.

Lösungen: Parabel
$$y = x^2 - 4x - 5$$

 $A_{Viereck} = 32 FE$
 $Q(2|-6)$

Aufgabe B2b/2021

Der Punkt A(-4|-1) liegt auf der Parabel p_1 mit der Funktionsgleichung $y = x^2 + bx + 7$.

Die Gerade g schneidet die Parabel p_1 im Punkt A und im Scheitelpunkt S_1 .

ullet Berechnen Sie die Funktionsgleichungen der Parabel p_1 und der Geraden g.

Durch Spiegelung des Scheitelpunktes S_1 an der y-Achse entsteht der Punkt S_2 . S_2 ist der Scheitelpunkt einer nach oben geöffneten verschobenen Normalparabel p_2 .

• Geben Sie die Funktionsgleichung von p_2 in der Form $y = x^2 + bx + c$ an.

Der Schnittpunkt der Geraden g mit der y-Achse ist der Scheitelpunkt S_3 der Parabel p_3 . Die Parabel p_3 der Form $y=ax^2+c$ geht außerdem durch die Scheitelpunkte S_1 und S_2 .

• Berechnen Sie die Funktionsgleichung der Parabel p_3 .

Lösungen:
$$p_1: y = x^2 + 6x + 7$$
; $g: y = -x - 5$
 $p_2: y = x^2 - 6x + 7$
 $p_3: y = \frac{1}{3}x^2 - 5$

RS-Abschlussaufgaben Wahlteil zu Funktionen (Gerade, Parabel)

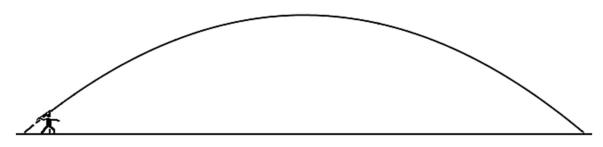
Realschulabschluss Funktionen (Gerade, Parabel) (Wahlteil B) ab 2021

Aufgabe B3b/2021

Die Flugbahn eines Speers ist nahezu parabelförmig.

Der Abwurfpunkt A liegt 1,80 m über der Abwurffläche.

Der Speer erreicht nach 20 m, in horizontaler Richtung von der Abwurflinie gemessen, seine maximale Höhe von 9,80 m.



Powered by GEOGEBRA.org

- Berechnen Sie eine mögliche Funktionsgleichung der Flugkurve des Speers.
- Wie weit fliegt der Speer?

Ein zweiter Wurfversuch kann mit der Funktionsgleichung $y=-\frac{1}{30}x^2+13$ beschrieben werden. Die Wurfweite beträgt 38,15 m.

• Geben Sie die Höhe des Abwurfpunktes an.

Lösungen: Parabel $y = -\frac{1}{50}x^2 + 9.8$

Wurfweite: 42,14 m Abwurfhöhe: 1,71 m

Aufgabe B4a/2021

Die Gerade g und die verschobene Normalparabel p gehen durch die beiden Punkte A(2|3) und B(6|11).

Der Punkt $\mathcal{C}(4|y_c)$ liegt auf der Parabel p.

Die Gerade h steht senkrecht auf g und geht durch C.

Die Gerade h schneidet die beiden Koordinatenachsen in den Punkten P und Q.

Berechnen Sie die Koordinaten von P und Q.

Lösungen: P(10|0); Q(0|5)

Aufgabe B1b/2022

Die Gerade g hat die Funktionsgleichung y = x + 2.

Die Parabel p_1 hat die Funktionsgleichung $y = -x^2 + 8$.

Die Parabel p_1 schneidet die Gerade g in den Punkten P und Q.

• Berechnen Sie die Koordinaten der Punke P und Q.

Durch die beiden Schnittpunkte P und Q verläuft die verschobene, nach oben geöffnete Normalparabel p_2 .

• Berechnen Sie Koordinaten des Scheitelpunktes S_2 von p_2 .

Robin behauptet: Das Dreieck mit den Punkten P,Q und S_2 ist rechtwinklig.

• Hat Robin Recht? Begründen Sie Ihre Antwort rechnerisch.

Lösungen: P(-3|-1); Q(2|4)

 $S_2(-1|-5)$

Robin hat nicht Recht.

RS-Abschlussaufgaben Wahlteil

zu Funktionen (Gerade, Parabel)

Realschulabschluss Funktionen (Gerade, Parabel) (Wahlteil B) ab 2021

 $T(-2|\xi|)$

Aufgabe B2a/2022

Das Schaubild zeigt Ausschnitte der verschobenen Normalparabel p_1 und der nach unte geöffneten Parabel p_2 .

 Bestimmen Sie die Funktionsgleichungen der beiden Parabeln.
 Entnehmen Sie dazu geeignete Werte aus dem Schaubild.

Die Gerade g verläuft durch die beiden Scheitelpunkt S_1 und S_2 .

• Berechnen Sie die Funktionsgleichung von *g*.

Die Gerade h verläuft senkrecht zu g und geht durch den Punkt R(4|5).

- Berechnen Sie die Funktionsgleichung von h.
- Geben Sie die Funktionsgleichung Powered by GEOGEBRA.org einer weiteren nach oben geöffneten Normalparabel p_3 an, die keine gemeinsamen Punkte mit p_1 und p_2 hat.

Lösungen:
$$p_1$$
: $y = x^2 - 2x - 3$; p_2 : $y = -0.25x^2 + 6$
 g : $y = -10x + 6$; h : $y = \frac{1}{10}x + 4.6$
 $S_3(1|7)$; p_2 : $y = (x - 1)^2 + 7$

 $S_2(0|6)$

R(4|5)

Aufgabe B3b/2022

Das Foto zeigt ein "Tiny House". Die Vorderseite des Hauses ist nahezu parabelförmig. Die maximale Höhe des Hauses beträgt $3,00\ m$. Am Boden ist es $2,70\ m$ breit.

 Berechnen Sie eine mögliche Funktionsgleichung für die parabelförmige Außenkontur des Hauses.

Die $2,00\,m$ hohe Eingangstür befindet sich mittig auf der Vorderseite des Hauses. Am oberen Ende der Eingangstür befindet sich ein Vordach, das von Außenkante zu Außenkante reicht.

- Berechnen Sie die Länge des Vordachs. In $1\,m$ Höhe hat der Türrahmen eine waagrechte Entfernung von $0,70\,m$ zu den Seitenkanten.
- Berechnen Sie den Flächeninhalt der Tür.

Lösungen: Parabel $y = -1,646x^2 + 3$ Länge Vordach: 1,56 mFläche Tür: $1.6 m^2$

RS-Abschlussaufgaben Wahlteil

zu Funktionen (Gerade, Parabel)

Realschulabschluss Funktionen (Gerade, Parabel) (Wahlteil B) ab 2021

Aufgabe B4a/2022

Die Parabel p_1 hat die Funktionsgleichung $y = x^2 - 8x + 12$.

Die verschobene nach oben geöffnete Normalparabel p_2 hat den Scheitelpunkt $S_2(1|-7)$.

• Berechnen Sie die Koordinaten des Schnittpunktes Q_1 der beiden Parabeln p_1 und p_2 .

Die Parabel p_1 schneidet die x-Achse in den Punkten N_1 und N_2 .

• Berechnen Sie die Koordinaten von N_1 und N_2 .

Die Punkte N_1, N_2 und Q_1 bilden ein Dreieck.

• Berechnen Sie den Flächeninhalt des Dreiecks $N_1Q_1N_2$.

Der Punkt Q_1 bewegt sich auf der Parabel p_2 unterhalb der x-Achse. Dadurch entsteht der Punkt Q_2 und somit das Dreieck $N_1Q_2N_2$.

- Für welche Lage von Q_2 wird der Flächeninhalt des Dreiecks am größten?
- Berechnen Sie diesen maximalen Flächeninhalt.

Lösungen: $Q_1(3|-3);\ N_1(2|0);\ N_2(6|0)$ $A_{N_1Q_1N_2}=6\ FE$ $Q_2(1|-7);\ A_{N_1Q_2N_2}=14\ FE$

Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de