Themenerläuterung

Das Thema "Lineare Gleichungssyteme" verlangt von dir die Bestimmung der Lösungsmenge eines Gleichungsterms aus zwei Gleichungen mit den zwei Unbekannten x und y. Die beiden gestellten Terme musst du nach den Regeln der Äguivalenzumformung in die Form y = mx + b bringen. Dabei musst du vor allem die Regeln "Potenzrechnung vor Klammern", "Klammern vor Punktrechnung", "Punktrechnung vor Strichrechnung" beachten. Es entstehen jedes Mal zwei Gleichungen, deren Lösungsmenge mit dem "Einsetzungs-", "Gleichsetzungs-" bzw. "Additions- (Subtraktions-)verfahren" zu bestimmen ist. Ich empfehle dir, das "Additions- (Subtraktions-)verfahren" zu verwenden, weil damit die wenigsten Fehler passieren. In diesen Dokumenten wird ausschließlich das "Additions-(Subtraktions-)verfahren" verwendet.

<u>Die wichtigsten benötigten Formeln</u>

1. Kommutativgesetz (vertauschen von Variablen)

a + b = b + a $a \cdot b = b \cdot a$

2. Distributivgesetz (ausmultiplizieren)

> Faktor mal Klammer: $a \cdot (b+c) = a \cdot b + a \cdot c$

Klammer mal Klammer: $(a+b)\cdot(c+d) = a\cdot c + a\cdot d + b\cdot c + b\cdot d$

Assoziativgesetz (Verbindungsgesetz) 3.

> a + (b+c) = (a+b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Addition / Subtraktion 4.

a + a + a = 3a-a - a - a = -3a

5. Multiplikation / Division

 $a \cdot a = +a^{2} \qquad a \cdot (-a) = -a^{2} \qquad (-a) \cdot a = -a^{2} \qquad (-a) \cdot (-a) = +a^{2}$ $a \cdot b = +\frac{a}{b} \qquad a \cdot (-b) = -\frac{a}{b} \qquad (-a) \cdot b = -\frac{a}{b} \qquad (-a) \cdot (-b) = +\frac{a}{b}$

Übungsaufgaben im Stil der Abschlussprüfung

Aufgabe A1

Lösen Sie das folgende Gleichungssystem:

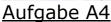
(1) 3y - 2x = 11

(2) $\frac{4}{3}y$ = $14\frac{1}{3}-x$ $\mathbb{L} = \{(5;7)\}$

Aufgabe A2

Lösen Sie das folgende Gleichungssystem:

- $(1) \quad y = -4x + 14$
- (2) 2y 11.8 + 15x = 40.7 + 8y $\mathbb{L} = \{(3,5;0)\}$


Aufgabe A3

Lösen Sie das folgende Gleichungssystem:

- (1) -2(-3.5y + 4x) + 3(x 2y) = 17
- (2) $-\frac{5}{2}x + 5y = 17,5$ $\mathbb{L} = \{(-3; 2)\}$

zu linearen Gleichungssystemen

Lösen Sie das folgende Gleichungssystem:

(1)
$$4\left(2y + \frac{1}{2}x\right) + 7 = -31$$

(2)
$$-35y + 7(-1+x) = 49$$

$$\mathbb{L} = \{(-7; -3)\}$$

Aufgabe A5

Lösen Sie das folgende Gleichungssystem:

(1)
$$3(y-2x)-2(1.5x+32.5)=22$$

(2)
$$2.5x - 5(-y + 1) = 0$$

$$\mathbb{L} = \{(-8; 5)\}$$

Aufgabe A6

Lösen Sie das folgende Gleichungssystem:

(1)
$$5(-x+3)+y=-6$$

(2)
$$2(-2.5x + 3.5y) = 11 - 4(2x - 1.5y)$$

$$\mathbb{L} = \{(4; -1)\}$$

Aufgabe A7

- Ermitteln Sie zunächst die Lösungsmenge des linearen Gleichungssystems.
- Was besagt diese über die Lage der beiden zu den entsprechenden Funktionsgleichungen gehörenden Graphen aus?

$$(1) \quad -4y - \frac{3}{5}x = 4 - 5y$$

(2)
$$-\frac{1}{5}x + y - \frac{2}{5}x = -2.5$$

$$\mathbb{L} = \{\}$$

Seite 2

Hinweis zu den Lösungen

Hier wird ausschließlich das Additions- bzw. Subtraktionsverfahren verwendet. Auf das Einsetzungs- bzw. Gleichsetzungsverfahren wird wegen dessen Fehleranfälligkeit komplett verzichtet.

Lösung A1

Detaillierte Lösung:

$$(1) 3y - 2x = 11$$

(2)
$$\frac{4}{3}y = 14\frac{1}{3} - x$$

Lösungsschritte:

1. Umformen beider Gleichungen in die Form y = ax + b.

(1)
$$3y - 2x = 11$$
 $+2x$; : 3

(1)
$$3y - 2x = 11$$
 | +2
(2) $\frac{4}{3}y = 14\frac{1}{3} - x$ | $\cdot \frac{3}{4}$
(1) $y = \frac{2}{3}x + \frac{11}{3}$
(2) $y = \frac{43}{4} - \frac{3}{4}x$

$$(1) y = \frac{2}{3}x + \frac{11}{3}$$

$$(2) y = \frac{43}{4} - \frac{3}{4}x$$

Umstellung von (2) nach dem Kommutativgesetz 2.

(1)
$$y = \frac{2}{3}x + \frac{11}{3}$$

(2)
$$y = -\frac{3}{4}x + \frac{43}{4}$$
 | · (-1) nur für Additionsverfahren

3.

(1)
$$y = \frac{2}{3}x + \frac{11}{3}$$

3. Additions verfahren
(1)
$$y = \frac{2}{3}x + \frac{11}{3}$$

(2) $-y = +\frac{3}{4}x - \frac{43}{4}$

4. Additions- bzw. Subtraktionsverfahren durchführen

Additionsverfahren

Subtraktionsverfahren

$$(1) y = \frac{2}{3}x + \frac{11}{3}$$

$$(1) y = \frac{2}{3}x + \frac{11}{3}$$

(1)
$$y = \frac{2}{3}x + \frac{11}{3}$$

(2) $-y = +\frac{3}{4}x - \frac{43}{4}$

(1)
$$y = \frac{2}{3}x + \frac{11}{3}$$

(2) $y = -\frac{3x}{4} + \frac{43}{4}$

(1)+(2)
$$0 = \frac{2}{3}x + \frac{3}{4}x + \frac{11}{3} - \frac{43}{4}$$

(1)-(2)
$$0 = \frac{2}{3}x - \left(-\frac{3}{4}x\right) + \frac{11}{3} - \frac{43}{4}$$

Wie du siehst, kommt bei beiden Verfahren dasselbe Ergebnis rau

Zusammenfassen

$$0 = \frac{8x + 9x}{12} + \frac{44 - 129}{12}$$
$$0 = \frac{17x}{12} - \frac{85}{12}$$

6. Vereinfachen

$$85 = 17x$$
 | :17

Nach x auflöen 7.

$$x = \frac{85}{17} = 5$$

Das errechnet x in Gleichung (1) wahlweise Gleichung (2) einsetzen zur

Errechning des y-Wertes.
(1)
$$y = \frac{2}{3} \cdot 5 + \frac{11}{3} = \frac{10}{3} + \frac{11}{3} = \frac{21}{3} = 7$$

Lösungsmenge aufschreiben $L = \{(5; 7)\}$

RS-Abschluss Übungsaufgaben zu linearen Gleichungssystemen

Lösunger

Lösung A2

(1)
$$y = -4x + 14$$

(2)
$$2y - 11.8 + 15x = 40.7 + 8y$$
 $-8y; -15x; +11.8$

$$(1) y = -4x + 14$$

(2)
$$-6y = -15x + 52.5$$
 : 6

(1)
$$y = -4x + 14$$

$$(2) -y = -2.5x + 8.75$$

(1)+(2)
$$0 = -6.5x + 22.75$$
 | $+6.5x$
 $6.5x = 22.75$ | $:6.5$
 $x = 3.5 \rightarrow (1)$

(1)
$$y = -4 \cdot 3.5 + 14 = 0$$

 $\mathbb{L} = \{(3.5; 0)\}$

Lösung A3

(1)
$$-2(-3.5y + 4x) + 3(x - 2y) = 17$$
 | ausmultiplizieren

(2)
$$-\frac{5}{2}x + 5y = 17,5$$
 | $+\frac{5}{2}x$

(1)
$$7y - 8x + 3x - 6y = 17$$
 | zusammenfassen

: 5

(2)
$$5y = \frac{5}{2}x + 17.5$$

(1)
$$y - 5x = 17$$
 $+5x$

(2)
$$y = \frac{1}{2}x + 3.5$$
 (-1)

(1)
$$y = 5x + 17$$

$$(2) -y = -\frac{1}{2}x - 3.5$$

(1)+(2)
$$0 = 4.5x + 13.5$$
 | $-4.5x$
 $-4.5x = 13.5$ | $:(-4.5)$
 $x = -3 \rightarrow (1)$

(1)
$$y = 5 \cdot (-3) + 17 = 2$$

 $\mathbb{L} = \{(-3; 2)\}$

Lösung A4

(2)

(1)
$$4\left(2y + \frac{1}{2}x\right) + 7 = -31$$
 | ausmultiplizieren

(2)
$$-35y + 7(-1+x) = 49$$
 | ausmultiplizieren

(1)
$$8y + 2x + 7 = -31$$
 $| -2x; -7$

(2)
$$-35y - 7 + 7x = 49$$
 | $-7x$; +7

(1)
$$8y = -2x - 38$$
 | :8
(2) $-35y = -7x + 56$ | :35

$$(2) \qquad -33y = -7x + 30$$

$$(1) \qquad y = -0.25x - 4.75$$

(1)+(2)
$$0 = -0.45x - 3.15$$
 | $+0.45x$
 $0.45x = -3.15$ | $:(0.45)$

(1)
$$x = -7 \rightarrow (1)$$

$$y = -0.25 \cdot (-7) - 4.75 = -3$$

$$\mathbb{L} = \{(-7, -3)\}$$

-y = -0.2x + 1.6

RS-Abschluss Übungsaufgaben zu linearen Gleichungssystemen

Lösunger

ausmultiplizieren

ausmultiplizieren

zusammenfassen

ausmultiplizieren

ausmultiplizieren

+5x; -15

-6y; +5x

+32

:8

. 5

. 5

+3x

+25y + 3x

-2,5x; +5

+9x: +65

: 5

: 3

 $\cdot (-1)$

-3.5x

:(-3,5)

Lösung A5

(1)	~ ′	~ `	0/4 =		~~
/ I \	7/12	1) 24 \	7/1 - 2	コンフレ	
		- /. X J -	-2(1,5x)	T 3/3	— /./.
· - /	\sim \sim	_,,	-(1)07		

(2)
$$2.5x - 5(-y + 1) = 0$$

$$(1) 3y - 6x - 3x - 65 = 22$$

$$(2) 2.5x + 5y - 5 = 0$$

$$(1) 3y - 9x - 65 = 22$$

$$(2) 5y = -2.5x + 5$$

$$(1) 3y = 9x + 87$$

(2)
$$y = -0.5x + 1$$

(1)
$$y = 3x + 29$$

(2)
$$-y = 0.5x - 1$$

(1)+(2)
$$0 = 3.5x + 28$$

 $-3.5x = 28$

$$x = -8 \rightarrow (1)$$

(1)
$$y = 3 \cdot (-8) + 29 = 5$$

 $\mathbb{L} = \{(-8, 5)\}$

Lösung A6

(1)
$$5(-x+3) + y = -6$$

(2)
$$2(-2.5x + 3.5y) = 11 - 4(2x - 1.5y)$$

(1)
$$-5x + 15 + y = -6$$

$$(2) -5x + 7y = 11 - 8x + 6y$$

(1)
$$y = 5x - 21$$

(2)
$$y = -3x + 11$$

(1)-(2)
$$0 = 5x - (-3x) - 21 - 11$$

$$0 = 8x - 32$$
$$32 = 8x$$

$$x = 4 \longrightarrow (1)$$

(1)
$$y = 5 \cdot 4 - 21 = -1$$

 $\mathbb{L} = \{(4; -1)\}$

Lösung A7

$$(1) -4y - \frac{3}{5}x = 4 - 5y$$

$$4y - \frac{3}{5}x = 4 - 5y$$

(2)
$$-\frac{1}{5}x + y - \frac{2}{5}x = -2.5$$

$$(1) -20y - 3x = 20 - 25y$$

$$(2) -x + 5y - 2x = -12,5$$

(1)
$$5y = 3x + 20$$

$$(2) 5y = 3x - 12,5$$

(1)-(2)
$$0 = 0 + 20 - (-12,5)$$

 $0 \neq 32,5$

- a) $\mathbb{L} = \{\}$
- Ist die Lösungsmenge eines linearen Gleichungssystems leer, verlaufen die zu den Funktionsgleichungen gehörenden Geraden in einem Koordinatensystem parallel, sie haben keinen Schnittpunkt.

RS-Abschlussaufgaben Pflichtteil

zu linearen Gleichungssystemen

Aufgabe P3/2004

Lösen Sie das folgende Gleichungssystem:

(1) x + 2(y + 2) = 12

(2)
$$\frac{1}{2}(x+4) - 3(y-1) = -3$$

 $\mathbb{L} = \{(2;3)\}$

Aufgabe P5/2006

Lösen Sie das folgende Gleichungssystem:

(1) 5(y-1)-3(x-7)=1

(2)
$$\frac{2}{3}y + \frac{20+x}{3} = 1$$

$$\mathbb{L} = \{(-5; -6)\}$$

Aufgabe P6/2008

Lösen Sie das folgende Gleichungssystem:

- $(1) \quad \frac{3y-7}{2} 5 = x$
- (2) $y-6=\frac{x+3}{5}$

$$\mathbb{L} = \{(2;7)\}$$

Aufgabe P4/2010

Lösen Sie das folgende Gleichungssystem:

(1) $\frac{x-3}{2} = y + 1$

(2)
$$\frac{2x-5}{3} - 10(y-1) = 16$$

$$\mathbb{L} = \{(4; -0.5)\}$$

Aufgabe P5/2012

Lösen Sie das folgende Gleichungssystem:

(1) 2(x-3y)-(x-y)=7

(2)
$$2(5y-x)+16=\frac{4x-2}{3}$$

$$\mathbb{L} = \{(2; -1)\}$$

Aufgabe P6/2015

Lösen Sie das folgende Gleichungssystem:

(1) $\frac{x-4y}{2} = 4$

(2)
$$3(2x + y) - 17 = \frac{x-2}{2}$$

$$\mathbb{L} = \{(4; -2)\}$$

Aufgabe P5/2019

Lösen Sie das folgende Gleichungssystem:

(1) $\frac{x+2}{4} - y = 6$

(2)
$$7 - (x - 2y) = y$$

$$\mathbb{L} = \{(2; -5)\}$$

RS-Abschlussaufgaben Pflichtteil

zu linearen Gleichungssystemen

Lösungen

Hinweis zu den Lösungen

Hier wird ausschließlich das Additions- bzw. Subtraktionsverfahren verwendet. Auf das Einsetzungs- bzw. Gleichsetzungsverfahren wird wegen dessen Fehleranfälligkeit komplett verzichtet.

Lösung P3/2004

- x + 2(y + 2) = 12(1)ausmultiplizieren
- $\frac{1}{2}(x+4) 3(y-1) = -3$ x + 2y + 4 = 12(2) ausmultiplizieren
- (1) -x; -4
- (2) 0.5x + 2 - 3y + 3 = -3-0.5x; -5
- (1)2y = -x + 8: 2
- -3y = -0.5x 8(2) :3
- $y = -\frac{1}{2}x + 4$ (1)
- $-y = -\frac{1}{6}x \frac{8}{3}$ (2)
- $0 = -\frac{1}{2}x \frac{1}{6}x + 4 \frac{8}{3}$ $0 = -\frac{3}{6}x \frac{1}{6}x + \frac{12}{3} \frac{8}{3}$ $\frac{4}{6}x = \frac{4}{3}$ (1)+(2)
- $x = 2 \rightarrow (1)$ $y = -0.5 \cdot 2 + 4 = 3 \implies \mathbb{L} = \{(2; 3)\}$ (1)

Lösung P5/2006

- (1)ausmultiplizieren
- 5(y-1) 3(x-7) = 1 $\frac{2}{3}y + \frac{20+x}{3} = 1$ (2) Nennerbeseitigung mit · 3
- (1) 5y - 5 - 3x + 21 = 1+3x; -16
- (2) 2y + 20 + x = 3-x; -20
- (1)5y = 3x - 15. 2
- 2y = -x 17(2) . 5
- (1)10y = 6x - 30
- (2) 10y = -5x - 85
- (1)-(2)0 = 6x - (-5x) - 30 - (-85)0 = 11x + 55-11x-11x = 55:(-11) $x = -5 \rightarrow (2)$
- 2y = -(-5) 17 = -12(2): 2 $y = -6 \implies \mathbb{L} = \{(-5, -6)\}$

Lösung P6/2008

- $\frac{3y-7}{2}-5=x$ (1). 2
- $y 6 = \frac{x+3}{5}$ 3y 7 10 = 2x(2) . 5
- (1) +17
- (2) 5y - 30 = x + 3+30
- (1)3y = 2x + 17
- (2) 5y = x + 33. 2

RS-Abschlussaufgaben Pflichtteil zu linearen Gleichungssystemen

Lösungen

: 7

(1)
$$3y = 2x + 17$$

$$(2) 10y = 2x + 66$$

(2)-(1)
$$7y = 0 + 66 - 17$$

 $7y = 49$

$$y = 7 \to (2)$$
(2) $5 \cdot 7 = x + 33$ | -33
$$x = 2$$

$$\mathbb{L} = \{(2; 7)\}$$

Lösung P4/2010

(1)
$$\frac{x-3}{2} = y+1$$
 | $\cdot 2$

(2)
$$\frac{2x-5}{3} - 10(y-1) = 16$$
 | \cdot 3
(1)
$$x - 3 = 2y + 2$$
 | \cdot 2

(2)
$$2x - 5 - 30(y - 1) = 48$$
 ausmultiplizieren

$$(1) 2y = x - 5 | 2$$

(2)
$$2x - 5 - 30y + 30 = 48$$
 | $-2x$; -25 (1) $4y = 2x - 10$

$$(2) -30y = -2x + 23$$

(1)+(2)
$$-26y = 0 - 10 + 23$$
 | :(-26)
 $y = -0.5 \rightarrow (1)$
(1) $2 \cdot (-0.5) = x - 5$ | +5
 $x = 4$

Lösung P5/2012

(2)

 $\mathbb{L} = \{(4; -0,5)\}$

30y = 10x - 50

(1)
$$2(x-3y) - (x-y) = 7$$
 | ausmultiplizieren
(2) $2(5y-x) + 16 = \frac{4x-2}{3}$ | $\cdot 3$

(1)
$$2x - 6y - x + y = 7$$
 | $-x$
(2) $6(5y - x) + 48 = 4x - 2$ | ausmultiplizieren

(1)
$$-5y = -x + 7$$
 | $\cdot 6$

(2)
$$30y - 6x + 48 = 4x - 2$$
 | $+6x$; -48
(1) $-30y = -6x + 42$

(1)+(2)
$$0 = 4x - 8$$
 | +8
 $4x = 8$ | :4

$$\begin{aligned}
 x &= 2 \to (1) \\
 &-5y &= -2 + 7 \\
 &y &= -1 \\
 &\mathbb{L} = \{(2; -1)\}
 \end{aligned}$$

Lösung P6/2015

(1)
$$\frac{x-4y}{3} = 4$$
 | \cdot 3

(2)
$$3(2x+y)-17=\frac{x-2}{2}$$

(1)
$$x - 4y = 12$$
 $+4y$

(2)
$$6(2x + y) - 34 = x - 2$$
 | ausmultiplizieren

RS-Abschlussaufgaben Pflichtteil zu linearen Gleichungssystemen

Lösungen

(1)	x = 4v + 12	2

(2)
$$12x + 6y - 34 = x - 2$$

(1)
$$x = 4y + 12$$

$$(2) 12x = -6y + 36$$

$$(1) 12x = 48y + 144$$

$$(2) 12x = -6y + 36$$

(1)-(2)
$$0 = 54y + 108$$

 $y = -2 \rightarrow (1)$

(1)
$$x - 4 \cdot (-2) = 12$$

 $x = 4$
 $\mathbb{L} = \{(4; -2)\}$

$$-x$$
; $-6y$; $+34$

$$| -108; : 54$$

Lösung P5/2019

(1)
$$\frac{x+2}{4} - y = 6$$

(2)
$$7 - (x - 2y) = y$$

$$(1) x + 2 - 4y = 24$$

(2)
$$x + 2 = 1y - 2$$

(2) $7 - x + 2y = y$

$$(1) x - 4y = 22$$

(2)
$$x + y = 22$$

(2) $7 - x + y = 0$

$$(1) x-4y=22$$

(2)
$$-x + y = -7$$

(1)+(2)
$$-3y = 15$$

 $y = -5$

$$-y$$

$$|\cdot(-1)|$$