Wahlteile nach Prüfungsjahren

Aufgabe W1a/2004

Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind:

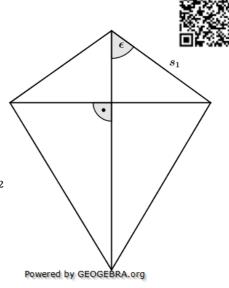
$$s_1 = 12,4 \ cm$$

 $\epsilon = 52.8 \ ^{\circ}$

Das Volumen der unteren Pyramide ist doppelt so groß wie das der oberen.

Berechnen Sie die Oberfläche des Körpers.

Lösung: $0 = 748.5 cm^2$



Aufgabe W1b/2004

Die Zeichnung stellt das Netz eines Würfels mit der Kantenlänge a dar. Es gilt:

$$\overline{BC} = \frac{3}{4}a$$

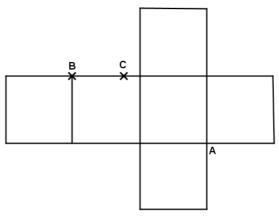
Zeichnen Sie ein Schrägbild des Körpers mit dem Dreieck ABC maßgerecht für $a=6\ cm$.

Zeigen Sie, dass sich der Flächeninhalt dieses Dreiecks in Abhängigkeit von α mit der Formel berechnen lässt:

$$A = \frac{3}{8}a^2\sqrt{2}.$$

Berechnen Sie die Länge der Strecke \overline{AC} im Körper in Abhängigkeit von a ohne Verwendung gerundeter Werte.

Lösung:
$$\overline{AC} = \frac{a}{4}\sqrt{33}$$



Powered by GEOGEBRA.org

Aufgabe W2a/2004

Die Parabel p_1 hat die Funktionsgleichung $y = x^2 + 4x + 6$.

Verschiebt man diese Parabel um drei Einheiten nach rechts und um drei Einheiten nach unten, entsteht die Parabel p_2 mit dem Scheitelpunkt S_2 .

Berechnen Sie die Koordinaten des Schnittpunkts Q der beiden Parabeln.

Durch S_2 und Q verläuft die Gerade g. Die Gerade h verläuft parallel zur Geraden g und geht durch den Scheitelpunkt S_1 der Parabel p_1 .

Bestimmen Sie rechnerisch die Gleichung der Geraden h.

Lösung:
$$Q(-1|3)$$
; $y = -2x + 6$.

Wahlteile nach Prüfungsjahren

Aufgabe W2b/2004

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung:

$$\frac{x^2 + 25x + 100}{2x^2 + 20x + 50} = \frac{2x + 3}{x + 5} - \frac{x - 6}{2x + 10}$$

$$\mathbb{D} = \mathbb{R} \setminus \{-5\}; \quad \mathbb{L} = \{4\}$$

Aufgabe W3a/2004

Das Fünfeck *ABCDE* besteht aus einem Quadrat und einem rechtwinkligen Dreieck.

Gegeben sind:

$$\overline{CD} = 4.1 cm$$

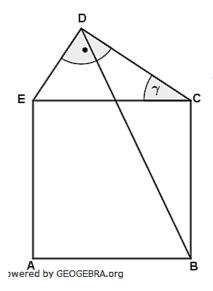
 $\gamma = 33.4^{\circ}$

Berechnen Sie die Länge \overline{BD} und den Flächeninhalt des Vierecks ABDE.

Lösung:
$$\overline{BD} = 7.9 cm$$

 $A_{ABDE} = 21.3 cm^2$

Tipp: Kosinussatz für \overline{BD} , zweimal trigonometrischen Flächeninhalt für A_{BCD} und A_{ECD} .



Aufgabe W3b/2004

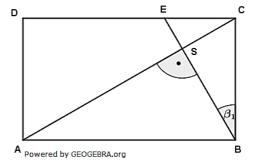
Im Rechteck ABCD gilt:

$$\overline{AD} = 2e$$
$$\beta_1 = 30^{\circ}$$

Zeigen Sie dass sich der Flächeninhalt des Vierecks *ASED* mit der Formel

$$A = \frac{11}{6}e^2\sqrt{3}$$

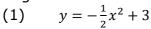
berechnen lässt.



Aufgabe W4a/2004

Das Bild zeigt Parabeln und Geraden. Ordnen Sie jedem Schaubild die richtige Funktionsgleichung zu.

Begründen Sie Ihre Entscheidungen.



(2)
$$y = -\frac{1}{4}x^2 + 3$$

(3)
$$y = (x-4)^2 - 3$$

(4)
$$y = (x+4)^2 - 3$$

(5)
$$y = x^2 - 2x - 1$$

(6)
$$y = -\frac{1}{3}x + 2$$

$$(7) y = x^2 - 4x + 5$$

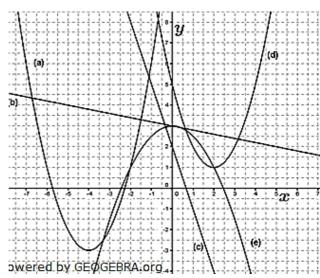
(8)
$$y = -2x - 3$$

(9)
$$y = -3x + 2$$

$$(10) y = -2x + 3$$

(11)
$$y = -0.5x + 3$$

$$(12) y = -\frac{1}{5}x + 3$$



www.fit-in-mathe-online.de

Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de

Lösung W1a/2004

Lösungslogik

Zur Beachtung: die Skizze zeigt den

Diagonalschnitt, nicht den Parallelschnitt.

Berechnung von $\frac{d}{2}$ über den $sin\epsilon$ und daraus d.

Berechnung von \bar{h}_1 über den Satz des Pythagoras.

Berechnung der Kantenlänge a der quadratischen Grundfläche über d.

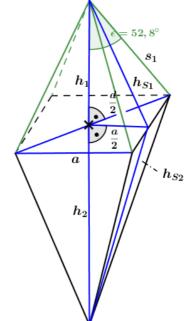
Berechnung von h_{S_1} über den Satz des Pythagoras.

Berechnung von V_1 über die Volumenformel. Berechnung von V_2 .

Berechnung von h_2 über die Volumenformel.

Berechnung von h_{S_2} über den Satz des

Pythagoras. Berechnung von M_1 und M_2 sowie $O_{K\"{o}rper}$.



S₁ Powered by GEOGEBRA.org

<u>Klausuraufschrieb</u>

$$\frac{d}{2}$$
: $\sin \epsilon = \frac{\frac{d}{2}}{s_1}$

$$\frac{d}{2} = s_1 \cdot \sin \epsilon = 12,4 \cdot \sin 52,8^\circ = 9,88$$

d:
$$d = 2 \cdot \frac{d}{2} = 2 \cdot 9,88 = 19,76$$

d:
$$d = 2 \cdot \frac{d}{2} = 2 \cdot 9,88 = 19,76$$

 h_1 : $h_1 = \sqrt{s_1^2 - \left(\frac{d}{2}\right)^2} = \sqrt{12,4^2 - 9,88^2}$ | Satz des Pythagoras $h_1 = \sqrt{56,1456} = 7,5$

a:
$$d = a \cdot \sqrt{2}$$

 $a = \frac{d}{\sqrt{2}} = \frac{19,76}{\sqrt{2}} = 13,97$

$$\frac{a}{2}$$
: $\frac{a}{2} = 0.5 \cdot a = 7.0$

$$\frac{a}{2}$$
: $\frac{a}{2} = 0.5 \cdot a = 7.0$

$$h_{S_1}$$
: $h_{S_1} = \sqrt{s_1^2 - \left(\frac{a}{2}\right)^2} = \sqrt{12.4^2 - 7.0^2}$

$$h_{S_1} = \sqrt{104,76} = 10,24$$

$$V_1$$
: $V_1 = \frac{1}{3} \cdot a^2 \cdot h_1 = \frac{1}{3} \cdot 13,79^2 \cdot 7,5 = 487,9$
 V_2 : $V_2 = 2 \cdot V_1 = 2 \cdot 487,9 = 975,8$

$$V_2$$
: $V_2 = \overset{3}{2} \cdot V_1 = 2 \cdot \overset{3}{487,9} = 975,8$

$$h_2$$
: $V_2 = \frac{1}{3} \cdot a^2 \cdot h_2$ | $\cdot 3$; $\cdot a^2$

$$h_2 = \frac{3 \cdot V_2}{a^2} = \frac{3 \cdot 975.8}{13.97^2} = 15.0$$

$$h_{S_2} = \sqrt{h_2^2 + \left(\frac{a}{2}\right)^2} = \sqrt{15,0^2 + 7,0^2}$$
 | Satz des Pythagoras

$$h_{S_2} = \sqrt{274} = 16,55$$

$$M_1$$
: $M_1 = 2 \cdot a \cdot h_{S_1} = 2 \cdot 13,97 \cdot 10,24 = 286,10$

$$M_2$$
: $M_2 = 2 \cdot a \cdot h_{S_2} = 2 \cdot 13,97 \cdot 16,55 = 462,40$

$$O_{Ges}$$
: $O_{Ges} = M_1 + M_2 = 286,10 + 462,40 = 748,5$

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 cm².

Lösung Aufgabe W1b/2004

Lösungslogik

Die Skizze zeigt das Schrägbild des gegebenen Würfels.

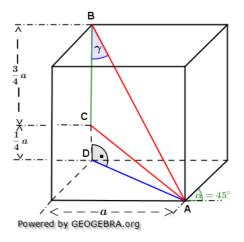
Die Strecke \overline{AB} ist die Raumdiagonale im Würfel. Der Winkel γ ist dadurch 45° .

Im Dreieck ABC ist die Strecke \overline{AD} als Flächendiagonale der Grundfläche gleichzeitig

Höhe auf die Seite BC.

Berechnung der Dreiecksfläche über die Flächenformel des Dreiecks.

Berechnung von \overline{AC} über den Satz des Pythagoras.



Klausuraufschrieb

$$\overline{AD}$$
: $\overline{AD} = a \cdot \sqrt{2}$ | Flächendiagonale

$$A_{ABC}$$
: $A_{ABC} = \frac{1}{2} \cdot \overline{BC} \cdot \overline{AD}$
$$A_{ABC} = \frac{1}{2} \cdot \frac{3}{4} a \cdot a \cdot \sqrt{2} = \frac{3}{8} a^2 \sqrt{2}$$
 q.e.d

$$\overline{AC}$$
: $\overline{AC} = \frac{1}{2} \cdot \frac{1}{4} a \cdot a \cdot \sqrt{2} = \frac{1}{8} a \cdot \sqrt{2}$ **q.e.u.**

$$\overline{AC} = \sqrt{\overline{AD}^2 + \overline{CD}^2} = \sqrt{\left(a\sqrt{2}\right)^2 + \left(\frac{1}{4}a\right)^2} \quad | \quad \text{Satz des Pythagoras}$$

$$\overline{AC} = \sqrt{2a^2 + \frac{1}{16}a^2} = \sqrt{\frac{33}{16}a^2} = \frac{a}{4}\sqrt{33}$$

Lösung W2a/2004

Lösungslogik

Umstellung der Parabelgleichung p_1 in die Scheitelpunktgleichung. Bestimmung des Scheitelpunkts von p_2 aus der Aufgabenstellung. Bestimmung des Schnittpunkts Q von p_1 mit p_2 durch Gleichsetzen. Aufstellen der Geradengleichung g durch g0. Aufstellen der zu g0 parallelen Geradengleichung g1 durch g1.

Klausuraufschrieb

$$p_1$$
: $y = x^2 + 4x + 6$

Scheitelpunkt von p_1 :

$$y = (x + 2)^2 + 2$$
 | quadratische Ergänzung $S_1(-2|2)$

Scheitelpunktverschiebung gem. Aufgabenstellung:

$$S_2$$
: $S_2(-2+3|2-3)$
 $S_2(1|-1)$

Funktionsgleichung von p_2 :

$$p_2$$
: $y = (x-1)^2 - 1$ | Scheitelpunktgleichung p_2 | $y = x^2 - 2x$

Realschulabschluss BW Wahlteile 2004

Schnittpunkt von p_1 mit p_2 :

$$p_1 \cap p_2$$
: | Schnittpunkt durch Gleichsetzung $x^2 + 4x + 6 = x^2 - 2x$ | $-x^2$; $+2x$ | $6x + 6 = 0$ | $x_0 = -1$; $y_0 = x_0^2 - 2x_0 = (-1)^2 - 2 \cdot (-1) = 1 + 2 = 3$

Der Schnittpunkt hat die Koordinaten Q(-1|3).

Geradengleichung durch S_2 und Q:

g:
$$y = mx + b$$

m: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-1)}{-1 - 1} = -2$
 $y = -2x + b$ | Punktprobe mit $S_2(1|-1)$
 $b = 1$

 $g: \quad y = -2x + 1$

Parallele Gerade h zu g: h: y = -2x + b | parallel heißt gleiche Steigung m = -2

 $2 = -2 \cdot (2) + b$ | Punktprobe mit $S_1(-2|2)$ b = 6

Lösung W2b/2004

y = -2x + 6

h:

$$\frac{x^2 + 25x + 100}{2x^2 + 20x + 50} = \frac{2x + 3}{x + 5} - \frac{x - 6}{2x + 10}$$
Nenner 1:
$$2x^2 + 20x + 50 \qquad 2(x + 5)^2$$
Nenner 2:
$$(x + 5)$$
Nenner 3:
$$2x + 10 \qquad 2(x + 5)$$

Nenner 3: 2x + 10 2(x + 5) Hauptnenner: $2 \cdot (x + 5)^2$

Hauptnenner:
$$2 \cdot (x+5)^2 = 0$$
 für $x_1 = -5$.

$$\mathbb{D} = \mathbb{R} \setminus \{-5\}$$

$$\frac{(x^2 + 25x + 100) \cdot 2 \cdot (x+5)^2}{2 \cdot (x+5)^2} = \frac{(2x+3) \cdot 2 \cdot (x+5)^2}{x+5} - \frac{(x-6) \cdot 2 \cdot (x+5)^2}{2(x+5)}$$

$$x^{2} + 25x + 100 = 2(2x + 3)(x + 5) - (x - 6)(x + 5)$$
 | ausmultiplizieren $x^{2} + 25x + 100 = 2(2x^{2} + 10x + 3x + 15) - (x^{2} + 5x - 6x - 30)$

| Restklammern auflösen

$$x^2 + 25x + 100 = 4x^2 + 26x + 30 - x^2 + x + 30$$
 | $-3x^2$; $-27x$; -60
 $-2x^2 - 2x + 40 = 0$ | $:(-2)$
 $x^2 + x - 20 = 0$ | p/q -Formel

$$x_{1,2} = -0.5 \pm \sqrt{0.25 + 20} = -0.5 \pm \sqrt{20.25} = -0.5 \pm 4.5$$

 $x_1 = 4$; $x_2 = -5$ Wegen $x_2 = -5 \notin \mathbb{D}$ ist $\mathbb{L} = \{4\}$ die einzigste Lösung.

Lösung W3a/2004

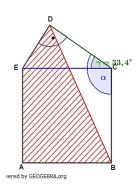
Lösungslogik (einfach)

Berechnung von \overline{EC} über $cos\gamma$.

Berechnung von α .

Berechnung von \overline{BD} mit dem Kosinussatz.

Berechnung von A_{ABDE} aus der Summe von \overline{EC}^2 und A_{ECD} abzüglich A_{BCD} .



Klausuraufschrieb

$$\overline{BD}: \qquad \overline{BD} = \sqrt{\overline{CD}^2 + \overline{BC}^2} - 2 \cdot \overline{CD} \cdot \overline{BC} \cdot \cos\alpha \qquad | \qquad \text{Kosinussatz}$$

$$\overline{EC}: \qquad \cos\gamma = \frac{\overline{CD}}{\overline{EC}} \qquad | \qquad \cdot \overline{EC}; : \cos\gamma$$

$$\overline{EC} = \frac{\overline{CD}}{\cos\gamma} = \frac{4.1}{\cos 33.4^{\circ}} = 4.91$$

$$\overline{BC}$$
: $\overline{BC} = \overline{EC} = 4.91$

$$\alpha$$
: $\alpha = 90^{\circ} + \gamma = 90^{\circ} + 33,4^{\circ} = 123,4^{\circ}$
 $\overline{BD} = \sqrt{4,1^2 + 4,91^2 - 2 \cdot 4,1 \cdot 4,91 \cdot \cos 123,4^{\circ}} = 7,94$

$$A_{ABDE}$$
: $A_{ABDE} = A_{ABCD} + A_{ECD} - A_{BCD}$

$$A_{ABCD}$$
: $A_{ABCD} = \overline{EC}^2 = 4.91^2 = 24.11 cm^2$

$$A_{ECD}$$
: $A_{ECD} = \frac{1}{2} \cdot \overline{EC} \cdot \overline{CD} \cdot \sin \gamma$ | trigonometrischer Flächeninhalt

$$A_{ECD} = \frac{1}{2} \cdot 4,91 \cdot 4,1 \cdot \sin 33,4^{\circ} = 5,54 \text{ cm}^2$$

$$A_{BCD}$$
: $A_{BCD} = \frac{1}{2} \cdot \overline{EC} \cdot \overline{CD} \cdot sin\alpha$ | trigonometrischer Flächeninhalt. $A_{ECD} = \frac{1}{2} \cdot 4,91 \cdot 4,1 \cdot sin123,4^{\circ} = 8,40 \ cm^{2}$

$$A_{ABDE}$$
: $A_{ABDE} = 24,11 + 5,54 - 8,40 = 21,25 cm^2$

Die Strecke \overline{BD} ist 7,9 cm lang. Die Fläche des Vierecks ABDE beträgt 21,3 cm².

Lösungslogik (umständlich)

Berechnung von $\overline{EC} = \overline{AB}$ über den $\cos \gamma$.

Berechnung von \overline{FD} über den $sin\gamma$.

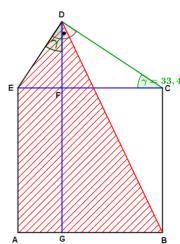
Berechnung von \overline{EF} über den tany.

Berechnung von \overline{FC} aus Differenz von \overline{EC} und \overline{EF} .

Die rote Fläche lässt sich jetzt berechnen aus:

Fläche Rechteck AGFE + Fläche Dreieck EFD + Fläche Dreieck BDG.

Berechnung der Strecke \overline{BD} über den Satz des Pythagoras.



Klausuraufschrieb

$$\overline{EC}: \qquad cos\gamma = \frac{\overline{CD}}{\overline{EC}} \qquad | \qquad \cdot \overline{EC}; : cos\gamma \text{ powered by GEOGEBRA.org}$$

$$\overline{EC} = \frac{\overline{CD}}{cos\gamma} = \frac{4.1}{cos33.4^{\circ}} = 4.91$$

$$\overline{FD}: \qquad sin\gamma = \frac{\overline{FD}}{\overline{CD}} \qquad | \qquad \cdot \overline{CD}$$

$$\overline{FD} = \overline{CD} \cdot sin\gamma = 4.1 \cdot sin33.4^{\circ} = 2.257$$

Realschulabschluss BW Wahlteile 2004

$$\overline{EF}: \qquad tan\gamma = \frac{\overline{EF}}{\overline{FD}} \qquad | \qquad \overline{FD}; : tan\gamma$$

$$\overline{EF} = \frac{\overline{FD}}{tan\gamma} = \frac{2,257}{tan33,4^{\circ}} = 3,423$$

$$\overline{FC}$$
: $\overline{FC} = \frac{\overline{EC}}{\overline{EC}} - \frac{\overline{EF}}{\overline{EF}} = 4,91 - 3,423 = 1,487$

$$A_{ABDE}$$
: $A_{ABDE} = A_{AGFE} + A_{EFD} + A_{BDG}$

$$A_{AGFE}$$
: $A_{AGFE} = \frac{\overline{EF} \cdot \overline{AB}}{\overline{EF} \cdot \overline{AB}} = 1,4882 \cdot 4,91 = 7,307$

$$A_{EFD}$$
: $A_{EFD} = \frac{1}{2} \cdot \overline{EF} \cdot \overline{FD} = \frac{1}{2} \cdot 1,4882 \cdot 2,257 = 1,6794$

$$A_{BDG}$$
: $A_{BDG} = \frac{1}{2} \cdot \overline{FC} \cdot (\overline{AB} + \overline{FD}) = \frac{1}{2} \cdot 3,423 \cdot (4,91 + 2,257) = 12,2663$

$$A_{ABDE}$$
: $A_{ABDE} = 7,307 + 1,6794 + 12,2663 = 21,2527$

$$\overline{BD}$$
: $\overline{BD} = \sqrt{\overline{FC}^2 + (\overline{AB} + \overline{FD})^2}$ | Satz des Pythagoras $\overline{BD} = \sqrt{3,423^2 + (4,9112 + 2,0257)^2} = 7,9435$

Die Strecke \overline{BD} ist 7,9 cm lang. Die Fläche des Vierecks ABDE beträgt 21,3 cm².

Lösung W3b/2004

Lösungslogik

Die Fläche des Vierecks A_{ASED} errechnet sich aus der Fläche des Dreiecks A_{ACD} abzüglich der Fläche des Dreiecks A_{ESC} .

Berechnung von \overline{DC} über den $tan30^{\circ}$.

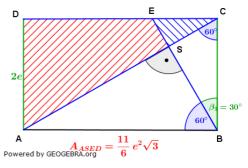
Bestimmung von \overline{SC} über den $sin30^{\circ}$.

Berechnung von \overline{SE} über den $tan30^{\circ}$.

Berechnung von A_{ACD} über die Flächenformel des

Berechnung von A_{ESC} über die Flächenformel des Powered by GEOGEBRÄ. Org = $\frac{11}{6}e^2\sqrt{3}$

Berechnung von A_{ASED} und Vereinfachen.



Klausuraufschrieb

 \overline{SE} :

$$\begin{array}{ll} \overline{A_{ASED}} = A_{ACD} - A_{ESC} \\ \overline{DC} : & tan30^{\circ} = \frac{\overline{AD}}{\overline{DC}} \\ \overline{DC} = \frac{\overline{AD}}{tan30^{\circ}} = \frac{2e}{\frac{1}{3}\sqrt{3}} = \frac{6e}{\sqrt{3}} \end{array}$$

$$\overline{SC}: \qquad sin30^{\circ} = \frac{\overline{SC}}{\overline{BC}} \qquad | \qquad \cdot \overline{BC}$$

$$\overline{SC} = \overline{BC} \cdot sin30^{\circ} = 2e \cdot 0,5 = e$$

$$tan30^{\circ} = \frac{\overline{SE}}{\overline{SC}} \qquad | \qquad \overline{SC}$$

$$\overline{SE} = \overline{SC} \cdot tan30^{\circ} = e \cdot \frac{1}{3}\sqrt{3} = \frac{e\sqrt{3}}{3}$$

$$A_{ACD}$$
: $A_{ACD} = \frac{1}{2} \cdot \overline{AD} \cdot \overline{DC} = \frac{1}{2} \cdot 2e \cdot \frac{6e}{\sqrt{3}} = \frac{6e^2}{\sqrt{3}}$

$$A_{ESC}$$
: $A_{ESC} = \frac{1}{2} \cdot \overline{SC} \cdot \overline{SE} = \frac{1}{2} \cdot e \cdot \frac{e\sqrt{3}}{3} = \frac{e^2\sqrt{3}}{6}$

$$A_{ESC}: \quad A_{ESC} = \frac{1}{2} \cdot \overline{SC} \cdot \overline{SE} = \frac{1}{2} \cdot e \cdot \frac{e\sqrt{3}}{3} = \frac{e^{2\sqrt{3}}}{6}$$

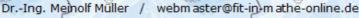
$$A_{ASED}: \quad A_{ASED} = \frac{6e^{2}}{\sqrt{3}} - \frac{e^{2\sqrt{3}}}{6} = \frac{36e^{2} - e^{2}\sqrt{3} \cdot \sqrt{3}}{6 \cdot \sqrt{3}} = \frac{36e^{2} - 3e^{2}}{6 \cdot \sqrt{3}}$$

$$= \frac{33e^{2}}{6 \cdot \sqrt{3}} \qquad | \qquad \cdot \frac{\sqrt{3}}{\sqrt{3}}$$

$$A_{ASED} = \frac{33e^{2} \cdot \sqrt{3}}{6 \cdot \sqrt{3} \cdot \sqrt{3}} = \frac{33e^{2} \cdot \sqrt{3}}{6 \cdot 3} = \frac{11}{6}e^{2}\sqrt{3}$$
q.e.

O by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium

www.fit-in-mathe-online.de



Realschulabschluss BW Wahlteile 2004

Lösung W4a/2004

Klausuraufschrieb

- (a) gehört zur Gleichung (4) Nach oben geöffnete Normalparabel mit Scheitelpunkt S(-4|-3)
- (b) gehört zur Gleichung (12) Gerade mit negativer Steigung $m = -\frac{1}{5}$ und y-Achsenabschnitt $S_{\nu}(0|3)$.
- (c) gehört zur Gleichung (9) Gerade mit negativer Steigung m=-3und y-Achsenabschnitt $S_v(0|2)$.
- (d) gehört zur Gleichung (7) Nach oben geöffnete Normalparabel mit Verschiebung nach rechts und nach oben, S(2|1).

