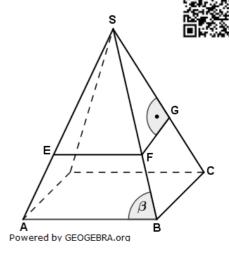
Wahlteile nach Prüfungsjahren


Aufgabe W1a/2005

Für die quadratische Pyramide gilt:

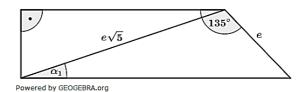
$$\overline{AB} = 5.6 \text{ cm}$$

 $\beta = 65.0^{\circ}$.
 $\overline{AE} = \overline{BF} = 3.0 \text{ cm}$

Berechnen Sie die Länge \overline{GF} sowie den Flächeninhalt des Vierecks BCGF.

Lösung:
$$\overline{FG} = 2.8 cm$$

 $A_{BCGF} = 13.6 cm^2$



Aufgabe W1b/2005

Gegeben ist das rechtwinklige Trapez.

Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:

$$tan\alpha_1 = \frac{1}{3}.$$

Aufgabe W2a/2005

Eine Parabel p_1 hat die Gleichung $y = x^2 + 4x + 1$.

Durch den Scheitelpunkt der Parabel und durch den Punkt P(6|5) geht die Gerade g_1 .

Berechnen Sie die Gleichung der Geraden g_1 .

Eine zweite nach oben geöffnete Normalparabel p_2 hat den Scheitelpunkt $S_2(3|y_2)$. Er liegt auf der Geraden g_1 .

Berechnen Sie die Koordinaten des Schnittpunkts A beider Parabeln.

Durch den Schnittpunkt A verläuft eine zu g_1 parallele Gerade g_2 . Die Gerade g_2 schneidet die Parabel p_2 in einem weiteren Punkt.

Berechnen Sie dessen Koordinaten.

Lösung:
$$g_1$$
: $y = x - 1$; $A(1|6)$; $B(6|11)$

Aufgabe W2b/2005

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung:

$$\frac{-2x^2 + 57x - 21}{6(x-4)(x+3)} = \frac{2x+1}{3x-12} - \frac{3x-1}{2x+6}$$

$$\mathbb{D} = \mathbb{R} \setminus \{-3, 4\}; \quad \mathbb{L} = \{\frac{5}{3}\}$$

Realschulabschluss BW Wahlteile 2005

Aufgabe W3a/2005

Von einer regelmäßigen neunseitigen Pyramide sind bekannt:

 $M = 300 \ cm^2$

(Mantelfläche)

a = 6.4 cm

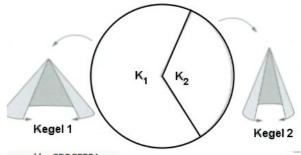
(Grundkante)

Berechnen Sie das Volumen der Pyramide.

Lösung: $V = 473 cm^3$

Aufgabe W3b/2005

Ein Kreis wird in zwei Kreisausschnitte geteilt. Beide Ausschnitte bilden jeweils den Mantel eines Kegels (siehe Skizze).


Für Kegel 1 gilt:

$$V_1 = 12\pi e^3$$
.

$$h_1 = 4e$$

Zeigen Sie ohne Verwendung gerundeter Werte, dass für den Radus von Kegel 2 gilt:

$$r_2 = 2e$$

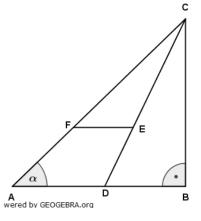
wered by GEOGEBRA.org

Aufgabe W4b/2005

Im Dreieck ABC liegt das Trapez ADEF. Gegeben sind:

$$\overline{AF} = 7.1 cm$$

$$\overline{FE} = 5.0 \ cm$$


$$\overline{BC} = 14.0 \ cm$$

$$\alpha = 44.0^{\circ}$$

Berechnen Sie den Flächeninhalt des Trapezes ADEF.

Lösung:
$$A_{ADEF} = 31.4 cm^2$$

Tipp: Zweiter Strahlensatz für \overline{AD} .

