Wahlteile nach Prüfungsjahren

Aufgabe W1a/2011

Im Dreieck ABC gilt:

$$\overline{AB} = 10.8 \ cm$$

$$\alpha = 40.0^{\circ}$$

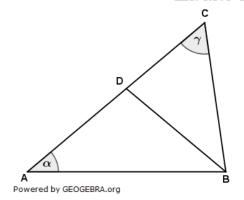
$$\gamma = 58.0^{\circ}$$

$$\overline{AD} = \overline{BD}$$

Berechnen Sie den Flächeninhalt des Dreiecks BCD.

Lösung:
$$A_{BCD} = 19.3 cm^2$$
.

Tipp: Zweimal Sinussatz für \overline{BD} und \overline{BC} dann trigonometrischen Flächeninhalt.



Aufgabe W1b/2011

Die Figur besteht aus dem Viereck ABCD und einem regelmäßigen Achteck.

Außer dem Punkt E liegen alle Eckpunkte des regelmäßigen Achtecks auf den Seiten des Vierecks

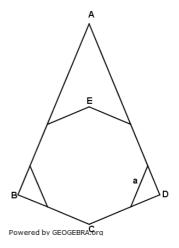
Weisen Sie nach, dass der Winkel CDA ein rechter Winkel ist.

Es gilt:

$$a = 6.2 cm$$

Berechnen Sie den Umfang des Vierecks ABCD.

Lösung:
$$u_{ABCD} = 72.2 cm$$
.



Aufgabe W2a/2011

Von einer massiven regelmäßigen fünfseitigen Pyramide sind bekannt:

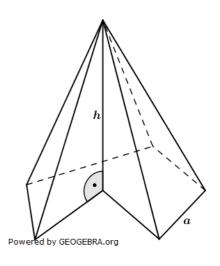
$$V = 329 cm^3$$
 (Volumen der Pyramide)

$$a = 7.0 cm$$

Ein Teil der Pyramide wird ausgeschnitten (siehe

Berechnen Sie die Oberfläche des entstandenen Körpers.

Lösung:
$$O_{Neu} = 314,6 \ cm^2$$



Aufgabe W2b/2011

Ein zylinderförmiges Gefäß hat eine kegelförmige und eine halbkugelförmige Vertiefung.

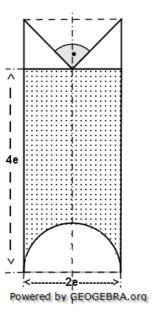
Das Wasser reicht genau bis zur Spitze der kegelförmigen Vertiefung (siehe Achsenschnitt).

Das Gefäß wird gedreht und auf die kegelförmige Vertiefung gestellt.

Zeigen Sie ohne Verwendung gerundeter Werte, dass die Höhe des Wasserspiegels danach

$$h_W = \frac{11}{3}e.$$

beträgt.



Aufgabe W3a/2011

Die nach oben geöffnete Normalparabel p_1 verläuft durch die Punkte A(1|5) und B(6|10). Die Parabel p_2 hat die Gleichung $y=-x^2+2$.

Besitzen die beiden Parabeln gemeinsame Punkte? Überprüfen Sie durch Rechnung.

Geben Sie die Gleichung einer Geraden g an, die weder mit p_1 noch mit p_2 einen gemeinsamen Punkt hat.

Lösung: keine gemeinsamen Punkte z. B.: g: y = -x + 3 (andere Lösungen möglich)

Aufgabe W3b/2011

Die Parabel p mit der Gleichung $y = -\frac{1}{2}x^2 + 4,5$ schneidet die x-Achse in den Punkten N_1 und N_2 . Die Gerade g verläuft durch den rechten Schnittpunkt der Parabel mit der x-Achse und hat die Steigung m = -2.

Berechnen Sie den zweiten Schnittpunkt Q der Geraden g mit der Parabel p. Die Punkte N_1 und N_2 sowie der Punkt Q bilden ein Dreieck. Berechnen Sie den Flächeninhalt des Dreiecks.

Der Punkt Q bewegt sich jetzt oberhalb der x-Achse auf der Parabel p. Für welche Lage von Q wird der Flächeninhalt des Dreiecks am größten?

Lösung: Q(1|4); A = 12 FE; Q(0|4,5)

Aufgabe W4a/2011

Die Abschlussklassen der Linden-Realschule organisieren zugunsten eines sozialen Projekts eine Tombola. Die Tabelle zeigt die Losverteilung und die damit jeweils verbundenen Gewinne.

Anzahl der Lose	Wert des Gewinns
150 Nieten	Kein Gewinn
40 Kleingewinne	Je 4,00 €
10 Hauptgewinne	Je 20,00 €

Ein Los kostet 2,00 €.

Berechnen Sie den Erwartungswert.

Lösung: E(X) = -0.20 €

Um den Gewinn für das soziale Projekt zu erhöhen, geben die Klassen 50 weitere Nieten in die Lostrommel.

Welchen Betrag können die Abschlussklassen spenden, wenn alle Lose verkauft werden?

Lösung: $E(X) = -0.56 \, \text{€}; \ G = 140 \, \text{€}$

Aufgabe W4b/2011

Die nach oben geöffnete Normalparabel p_1 hat den Scheitelpunkt $S_1(-3|-2)$. Die Parabel mit dem Scheitelpunkt S_2 hat die Gleichung $y=x^2-4x+7$. Der Schnittpunkte der beiden Parabeln heißt R.

Günter behauptet: "Einer der beiden Winkel des Dreiecks S_1S_2R ist stumpf. Hat er recht? Begründen Sie.

Lösung: Der Winkel S_1S_2R hat 108,43°, ist also stumpf.

Lösung W1a/2011

Lösungslogik (einfach)

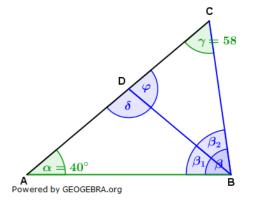
Bestimmung von β_1 , δ , φ und β_2 .

Berechnung von \overline{BD} über den Sinussatz.

Berechnung von \overline{BC} über den Sinussatz.

Berechnung von A_{BCD} über den

trigonometrischen Flächeninhalt.



Klausuraufschrieb

$$\beta_1$$
: $\beta_1 = \alpha = 40^{\circ}$ (gleichschenkliges Dreieck)

$$\delta$$
: $\delta = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}$

$$\varphi$$
: $\varphi = 180^{\circ} - \delta = 180^{\circ} - 100^{\circ} = 80^{\circ}$

$$\beta_2$$
: $\beta_2 = 180^{\circ} - \gamma - \varphi = 180^{\circ} - 58^{\circ} - 80^{\circ}$

$$\beta_2 = 42^{\circ}$$

$$\overline{BD}$$
: $\frac{\overline{BD}}{\sin \alpha} = \frac{\overline{AB}}{\sin \delta}$ | $\sin \alpha$ | Sinussatz

$$\frac{\overline{BD}}{\overline{BD}} = \frac{\frac{\overline{SM}}{\overline{AB}}}{\frac{\overline{Sin\delta}}{10.8}} \cdot \sin\alpha$$

$$\overline{BD} = \frac{10.8}{\sin 100^{\circ}} \cdot \sin 40^{\circ} = 7.05$$

$$\overline{BC}$$
: $\frac{\overline{BC}}{\sin\varphi} = \frac{\overline{BD}}{\sin\varphi}$ | Sinussatz

$$\overline{BC} = \frac{\overline{BD}}{\sin\gamma} \cdot \sin\varphi$$

$$\overline{BC} = \frac{7,05}{\sin 58^{\circ}} \cdot \sin 80^{\circ} = 8,19$$

$$A_{BCD}$$
: $A_{BCD} = \frac{1}{2} \cdot \overline{BD} \cdot \overline{BC} \cdot \sin \beta_2$ | trigonometrischer Flächeninhalt

 $A_{BCD} = \frac{1}{2} \cdot 7,05 \cdot 8,19 \cdot \sin 42^{\circ} = 19,32$

Der Flächeninhalt des Dreiecks BCD beträgt 19,3 cm^2 .

Lösungslogik (umständlich)

Berechnung von \overline{BD} über den $cos \beta_1$. Hierzu

Berechnung von β_1 über gleichschenkliges

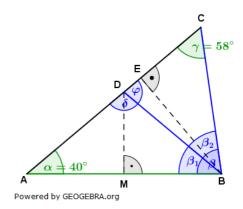
Dreieck \overline{ABD} und $\overline{\overline{MB}}$ als halbe Strecke $\overline{\overline{AB}}$.

Berechnung von $\overline{\mathit{BE}}$ über den $\mathit{sin}\varphi.$

Berechnung von \overline{BC} über den $sin\gamma$.

Berechnung von β_2 als Ergänzungswinkel zu φ und γ im Dreieck BCD.

Berechnung des Flächeninhalts des Dreiecks *BCD* über den trigonometrischen Flächeninhalt.



Klausuraufschrieb

$$\overline{BD}$$
: $\cos \beta_1 = \frac{\overline{MB}}{\overline{BD}}$ $| \overline{BD}$; $\cos \beta_1$

$$\beta_1$$
: $\beta_1 = \alpha = 40^{\circ}$ (gleichschenkliges Dreieck *ABD*)

Lösungen

Realschulabschluss BW Wahlteile 2011

$$\overline{MB}$$
: $\overline{MB} = \frac{\overline{AB}}{2} = 5.4$ (gleichschenkliges Dreieck ABD)

$$\overline{BD} = \frac{5,4}{co\underline{s}40^{\circ}} = 7,05$$

$$\overline{BE}$$
: $sin\varphi = \frac{\overline{BE}}{\overline{BD}}$

$$\overline{BE} = \overline{BD} \cdot \sin \varphi$$

$$δ$$
: $δ = 180° - 2 \cdot α = 180° - 80° = 100°$ (gleichschenkliges Dreieck *ABD*)

$$\varphi\colon\qquad\qquad \varphi=180^\circ-\delta=180^\circ-100^\circ=80^\circ$$

$$\overline{BE} = 7,05 \cdot \sin 80^{\circ} = 6,94$$

$$\overline{BC}$$
: $sin\gamma = \frac{\overline{BE}}{\overline{BC}}$ | $\cdot \overline{BC}$; $sin\gamma$

$$\overline{BC} = \frac{\overline{BC}}{\overline{SE}} = \frac{6.94}{\sin 58^{\circ}} = 8.18$$

$$R_{\bullet} = 180^{\circ} - v = 6 = 180^{\circ} - 58^{\circ} = 180^{\circ}$$

$$\beta_2$$
: $\beta_2 = 180^{\circ} - \gamma - \varphi = 180^{\circ} - 58^{\circ} - 80^{\circ}$
 $\beta_2 = 42^{\circ}$

$$A_{BCD}$$
: $A_{BCD} = \frac{1}{2} \cdot \overline{BD} \cdot \overline{BC} \cdot \sin \beta_2$ | trigonometrischer Flächeninhalt $A_{BCD} = \frac{1}{2} \cdot 7,05 \cdot 8,18 \cdot \sin 42^\circ = 19,29$

Der Flächeninhalt des Dreiecks BCD beträgt 19,3 cm².

Lösung W1b/2011

Lösungslogik

Bestimmung von α über die Eckwinkel im Achteck.

Bestimmung von β als Ergänzungswinkel zu 180° .

Berechnung von \overline{GD} über $sin\beta$.

Berechnung von \overline{CD} aus der Summe von a und \overline{GD} .

Berechnung von \overline{AD} über $tan\alpha$.

Berechnung von u_{ABCD} .

Klausuraufschrieb

$$\alpha$$
: $2 \cdot n \cdot \alpha = n \cdot 180^{\circ} - 360^{\circ}$ (Winkelsumme im n -Eck)

$$2\cdot 8\cdot \alpha = 8\cdot 180^\circ - 360^\circ = 1080$$

$$\alpha = \frac{1080}{16} = 67,5^{\circ}$$

$$\beta$$
: $\beta = 180^{\circ} - 2 \cdot \alpha = 180^{\circ} - 135^{\circ} = 45^{\circ}$

$$\delta$$
: $\delta = 180^{\circ} - 2 \cdot \beta = 90^{\circ}$ q.e.d.

$$\overline{GD}$$
: $\sin\beta = \frac{\overline{GD}}{a}$ | $\cdot a$

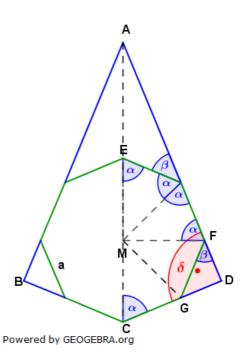
$$\overline{GD} = a \cdot \sin\beta = 6.2 \cdot \sin45^\circ = 4.38$$

$$\overline{CD}: \overline{CD} = a + \overline{GD} = 6.2 + 4.38 = 10.58$$

$$\overline{AD}$$
: $tan\alpha = \frac{\overline{AD}}{\overline{CD}}$ | $\cdot \overline{CD}$
 $\overline{AD} = \overline{CD} \cdot tan\alpha = 10,58 \cdot tan67,5^{\circ} = 25,54$

$$u_{ABCD}$$
: $u_{ABCD} = 2 \cdot (\overline{AD} + \overline{CD}) = 2 \cdot 36{,}12 = 72{,}24$

Der Umfang des Vierecks ABCD beträgt 72,2 cm.



Lösung W2a/2011

Lösungslogik

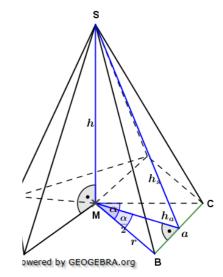
Pvramide.

Wir berechnen zunächst die Oberfläche der massiven Pyramide mit $O_{Pyr} = G + M$. Die Grundfläche (regelmäßiges Fünfeck) ergibt sich aus $G = 5 \cdot \frac{1}{2} \cdot r^2 \cdot sin\alpha$ (siehe Formelsammlung). Hierzu berechnen wir α , $\frac{\alpha}{2}$ und r über den $sin\frac{\alpha}{2}$ Wir berechnen dann h über die Volumenformel der

Für den Mantel benötigen wir h_s .

Berechnung von h_a über den Satz des Pythagoras. Berechnung von h_s über den Satz des Pythagoras. Berechnung von M über 5 mal den Flächeninhalt eines Seitendreiecks.

Berechnung von \mathcal{O}_{Pyr} aus der Summe von \mathcal{G} und \mathcal{M} .



Der ausgeschnittene Teil nimmt $\frac{1}{5}$ von O_{Pyr} weg, hinzu kommt jedoch zweimal der Flächeninhalt des Dreiecks BMS.

Berechnung von A_{BMS} über die Flächenformel des Dreiecks. Berechnung von O_{Neu} .

Klausuraufschrieb

$$\overline{O_{P\gamma r} = G + M}$$

$$\alpha$$
: $\alpha = \frac{360^{\circ}}{5} = 72^{\circ}$ hieraus $\frac{\alpha}{2} = 36^{\circ}$

$$r: \qquad \sin\frac{\alpha}{2} = \frac{\frac{\alpha}{2}}{r}$$

$$r = \frac{\frac{\alpha}{2}}{\sin\frac{\alpha}{2}} = \frac{3.5}{\sin 36^{\circ}} = 5.95$$

G:
$$G = 5 \cdot \frac{1}{2} \cdot r^2 \cdot sin\alpha = 2,5 \cdot 5,95^2 \cdot sin72^\circ$$
 | trigonometrischer Flächeninhalt $G = 84.17$

h:
$$V_{Pyr} = \frac{1}{3} \cdot G \cdot h$$
 | $\cdot 3$; $\cdot 6$

$$h = \frac{3 \cdot V_{Pyr}}{G} = \frac{3 \cdot 329}{84,17} = 11,73$$

$$h_a$$
: $h_a = \sqrt{r^2 - \left(\frac{a}{2}\right)^2} = \sqrt{5,95^2 - 3,5^2}$ | Satz des Pythagoras

$$h_a = \sqrt{23,1525} = 4,81$$

$$h_s = \sqrt{h^2 + h_a^2} = \sqrt{11,73^2 + 4,81^2}$$
 | Satz des Pythagoras
$$h_s = \sqrt{160,729} = 12,68$$

$$A_{BCS}$$
: $A_{BCS} = \frac{1}{2} \cdot a \cdot h_S = \frac{1}{2} \cdot 7 \cdot 12,68 = 44,83$

M:
$$M = 5 \cdot A_{BCS} = 5 \cdot 44,83 = 221,9$$

 O_{PVr} : $O_{PVr} = 84,17 + 221,9 = 306,07$

$$A_{BMS}$$
: $A_{BMS} = \frac{1}{2} \cdot r \cdot h = \frac{1}{2} \cdot 5,95 \cdot 11,73 = 34,90$

$$O_{Neu}$$
: $O_{Neu} = \frac{4}{5} \cdot O_{Pyr} + 2 \cdot A_{BMS} = \frac{4}{5} \cdot 306 + 2 \cdot 34,9 = 314,60$

Die Oberfläche des entstandenen Körpers beträgt 314,6 cm².

Lösung W2b/2011

<u>Lösungslogik</u>

Benötigt wird zunächst das Volumen des Wassers im nicht gedrehten Zustand. Dieses Volumen ist dann gleichzusetzen mit dem Volumen, welches sich im gedrehten Zustand bei einer Wasserhöhe $h_{\mathcal{W}}$ ergibt.

Für das Volumen des Wassers im nicht gedrehten Zustand berechnen wir:

Volumen des Zylinders V_{Zyl} bis zur Füllhöhe 4e.

Volumen der Halbkugel V_{HK} mit Radius e. Volumen des Wassers V_W aus der Differenz von V_{Zyl} und V_{HK} .

Für den gedrehten Zustand berechnen wir: Volumen des Zylinders V_{Zyl_q} bis zur

Füllhöhe h_W .

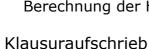
Berechnung von h_{keq} .

Berechnung des Volumens des Kegels V_{Keg} mit Radius e und Höhe h_{Keg} .

Berechnung des Volumens des Wassers V_{W_a} .

Gleichsetzung von V_{W_a} und V_W .

Berechnung der Höhe des Wasserstandes h_W im gedrehten Zustand.



$$V_{Zyl}$$
: $V_{Zyl} = \pi r^2 h = \pi \cdot e^2 \cdot 4e = 4\pi e^3$

$$V_{HK}$$
: $V_{HK} = \frac{1}{2} \cdot \frac{4}{3} \pi r^3 = \frac{2}{3} \pi \cdot e^3$

$$V_W$$
: $V_W = V_{Zyl} - V_{HK} = 4\pi e^3 - \frac{2}{3}\pi e^2 = \frac{12}{3}\pi e^3 - \frac{2}{32}\pi e^3 = \frac{10}{3}\pi e^3$
 V_{Zyl_g} : $V_{Zyl_g} = \pi r^2 \cdot h_w = \pi e^2 h_w$

$$V_{Zyl_a}$$
: $V_{Zyl_a} = \pi r^2 \cdot h_w = \pi e^2 h_w$

$$h_{Keg}$$
: $h_{Keg} = r_{Keg} = e$ | Wegen 90° Spitzenwinkel des Kegels

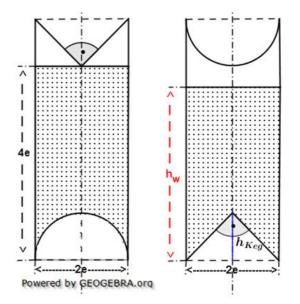
$$V_{Keg}$$
: $V_{Keg} = \frac{1}{3}\pi r^2 h_{Keg} = \frac{1}{3}\pi \cdot e \cdot e = \frac{1}{3}\pi e^3$

$$V_{W_g} \colon V_{W_g} = V_W = V_{Zyl_g} - V_{Keg}$$

$$\frac{10}{3}\pi e^3 = \pi e^2 h_w - \frac{1}{3}\pi e^3 \qquad | + \frac{1}{3}\pi e^3$$

$$\frac{11}{3}\pi e^3 = \pi e^2 h_w \qquad | : \pi e^2$$

$$h_w = \frac{11}{2}e \qquad q.e.d.$$



Lösung W3a/2011

Lösungslogik

Aufstellung der Parabelgleichung p_1 durch die Punkte A und B.

Untersuchung auf Schnittpunkte durch Gleichsetzung von p_1 mit p_2 .

Verdeutlichung der Situation durch ein Schaubild.

Aufstellung einer Geradengleichung g_1 , die weder p_1 noch p_2 schneidet.

Klausuraufschrieb

$$p_2: \quad y = -x^2 + 2$$

Funktionsgleichung von p_1 durch A und B:

$$p_1: \quad y = x^2 + px + q$$

(1)
$$5 = 1 + p + q$$
 | Punktprobe mit $A(1|5)$
(2) $10 = 36 + 6p + q$ | Punktprobe mit $B(6|10)$

(2)
$$10 = 36 + 6p + q$$
 (1)-(2) $-5 = -35 - 5p$ $5p = -30$

$$p = -6$$

$$p \rightarrow (1)$$

$$5 = 1 - 6 + q$$

$$q = 10$$

$$p_1$$
: $y = x^2 - 6x + 10$

Schnittpunkte von p_1 mit p_2 :

$$p_1 \cap p_2$$
: | Schnittpunkte durch Gleichsetzung | $x^2 - 6x + 10 = -x^2 + 2$ | $+x^2$; -2

: 5

+5

$$x^{2} - 6x + 10 = -x^{2} + 2$$
 | +x
 $2x^{2} - 6x + 8 = 0$ | :2

$$x^2 - 3x + 4 = 0$$
 | p/q -Formel

$$x_{1,2} = 1.5 \pm \sqrt{2,25 - 4} = 1.5 \pm \sqrt{-1,75}$$

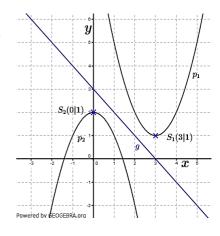
Wegen $\sqrt{-1,75}$ ist die Gleichung nicht lösbar, p_1 und p_2 haben keine gemeinsamen Punkte.

Geradengleichung g ohne Schnittpunkte mit p_1 und p_2 :

$$g$$
: $y = mx + b$

Wie aus der Graphik ersichtlich, muss die Gerade zwischen den beiden Parabeln hindurch verlaufen. Dies ist beispielsweise für m=-1 und b=3 der Fall.

g: y = -x + 3 (andere Lösungen denkbar)



Lösung W3b/2011

Lösungslogik

Berechnung der Koordinaten von N_1 und N_2 als Nullstellen von p durch Setzen von p auf p0.

Aufstellung der Geradengleichung g mit m=-2 durch die rechte Nullstelle von p. Berechnung von Q durch Gleichsetzung von p mit g.

Verdeutlichung der Situation durch ein Schaubild.

Berechnung des Flächeninhaltes des Dreiecks N_1N_2Q .

Untersuchung und Bestimmung der Lage von Q für maximalen Inhalt des Dreiecks N_1N_2Q .

<u>Klausuraufs</u>chrieb

Nullstellen von p:

p:
$$y = -\frac{1}{2}x^2 + 4.5$$

 $0 = -\frac{1}{2}x^2 + 4.5$
 $\frac{1}{2}x^2 = 4.5$.

Schnittpunkte mit der x-Achse über y = 0

$$\frac{1}{2}x^2 = 4,5.$$

$$x^2 = 9$$

$$x_{1,2} = \pm 3$$

 $N_1(-3|0); N_2(3|0)$

N₂ somit rechte Nullstelle

Geradengleichung g durch N_2 mit m = -2:

$$g: \quad y = -2x + b$$

 $0 = -2 \cdot 3 + b$ b = 6

Punktprobe mit $N_2(3|0)$

$$p = 6$$
$$y = -2x + 6$$

Schnittpunkte von p mit g:

$$p \cap g$$
: | Schnittpunkte durch Gleichsetzung
 $-\frac{1}{2}x^2 + 4.5 = -2x + 6$ | $+2x$; -6 | $-\frac{1}{2}x^2 + 2x - 1.5 = 0$ | $\cdot (-2)$ | p/g -Formel

$$x_{1,2} = 2 \pm \sqrt{4-3} = 2 \pm 1$$

$$x_1 = 3; \quad x_2 = 1$$

$$x_2 \rightarrow g$$
:

$$y_2 = -2 \cdot 1 + 6 = 4$$

Der zweite Schnittpunkt hat die Koordinaten Q(1|4).

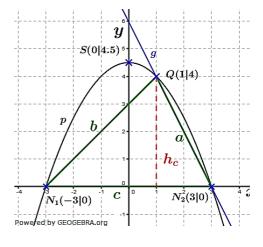
Fläche des Dreiecks N₁N₂Q:

$$A_{N_1N_2Q}$$
: $A_{N_1N_2Q} = \frac{1}{2} \cdot c \cdot h_c$
 $c = 6$; $h_c = 4$
 $A_{N_1N_2Q} = \frac{1}{2} \cdot 6 \cdot 4 = 12 FE$

Das Dreieck N_1N_2Q hat einen Flächeninhalt von 12 FE.

Die Basis c des Dreiecks bleibt unverändert. Sein Flächeninhalt wird somit durch die Länge der Höhe h_c bestimmt. h_c ist dann am größten, wenn Q in den Scheitel S wandert.

Für Q(0|4,5) ist der Flächeninhalt des Dreiecks N_1N_2Q maximal.



Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de

Lösung W4a/2011

Lösungslogik

Aufgabe zum Erwartungswert.

Aufstellen einer Tabelle aus drei Zeilen mit drei Spalten, die ersten zwei Spalten für die Gewinnsituationen, die dritte Spalte für die Niete.

Eintragung der jeweiligen Gewinne abzüglich Lospreis in die ersten beiden Spalten der ersten Zeile. Eintragung des Lospreises mit negativem Vorzeichen in die dritte Spalte der ersten Zeile.

Eintragung der Wahrscheinlichkeiten für die Gewinne in die ersten beiden Spalten der zweiten Zeile, Wahrscheinlichkeit für die Nieten in der dritten Spalte der zweiten Zeile.

Spalten der Zeile eins und zwei vorzeichengerecht multiplizieren und in die Spalten der dritten Zeile eintragen.

Vorzeichengerechte Addition der Spalteninhalte der dritten Zeile ergibt den Erwartungswert.

Neuberechnung des Erwartungswertes mit erhöhter Losanzahl.

Berechnung des Betrages, der gespendet werden kann über die Multiplikation von Anzahl der Lose mit dem Betrag des Erwartungswertes.

Klausuraufschrieb

$$P(20 €) = \frac{10}{200} = \frac{1}{20}$$

$$P(4 €) = \frac{40}{200} = \frac{1}{5}$$

$$P(-2 €) = \frac{150}{200} = \frac{3}{4}$$

$$P(4 \in) = \frac{40}{200} = \frac{1}{5}$$

$$P(-2 \in) = \frac{150}{200} = \frac{3}{4}$$

Berechnung der Erwartungswerte:

.9 40. =		
18 €	2€	-2,00€
1	1	3
$\overline{20}$	- 5	$\frac{\overline{4}}{4}$
0,90 €	0,40 €	-1,50 €

$$EX = 0.9 + 0.40 - 1.50 = -0.20 \in$$

Neuberechnung nach Erhöhung der Losanzahl:

$$P(20 \in) = \frac{10}{250} = \frac{1}{25}$$

$$P(4 \in) = \frac{40}{250} = \frac{4}{25}$$
 $P(-2 \in) = \frac{200}{250} = \frac{4}{5}$

$$P(-2 \in) = \frac{200}{250} = \frac{4}{5}$$

Berechnung der Erwartungswerte

18 €	2€	-2,00 €
1	4	4
$\overline{25}$	$\overline{25}$	- 5
0,72 €	0,32 €	-1,60 €

$$EX = 0.72 + 0.32 - 1.60 = -0.56 \in$$

Verkauf aller Lose:

$$G = n \cdot |EX| = 250 \cdot 0.56 = 140 \in$$

Die Schüler der Abschlussklasse können 140 € spenden, wenn alle Lose verkauft werden.

Lösung W4b/2011

Lösungslogik

Wir stellen die Scheitelpunktgleichung der Parabel p_1 auf und formen diese um in die allgemeine Form der Parabel.

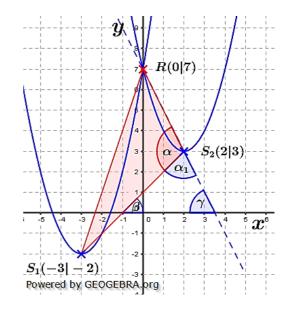
Wir bestimmen den Scheitelpunkt von p_2 . Wir zeichnen die beiden Parabeln in ein Koordinatensystem und verbinden die Punkte S_1 , S_2 und R zu einem Dreieck. Aus der Zeichnung lesen wir ab, dass der stumpfe Winkel bei S_2 liegt.

Wir berechnen β über den tan.

Wir berechnen γ über den tan.

Wir berechnen α_1 über die Winkelsumme im Dreieck.

Wir berechnen α über $180^{\circ} - \alpha_{-}1$.



Klausuraufschrieb

Parabelgleichung von p_1 :

$$p_1$$
: $y = (x+3)^2 - 2$
 $y = x^2 + 6x + 7$

Scheitelpunkt von p_2 :

S₂:
$$y = x^2 - 4x + 7$$

 $y = (x - 2)^2 - 4 + 7$
 $y = (x - 2)^2 + 3$
S₂(2|3)

Winkelberechnungen:

β:
$$tanβ = m_{S_1S_2} = \frac{3-(-2)}{2-(-3)} = 1$$

 $β = tan^{-1}(1) = 45^\circ$
γ: $tanγ^* = m_{RS_2} = \frac{3-7}{2-0} = -2$
 $γ^* = tan^{-1}(-2) = -63,43^\circ$

Scheitelpunktgleichung mit $S_1(-3|-2)$ allgemeine Gleichung von p_1

quadratische Ergänzung

dies ist der nach unten geöffnete spitze Winkel, den die Gerade durch R und S_2 mit der x-Achse bildet.

$$\gamma = |\gamma^*| = 63,43$$
° α_1 : $\alpha_1 = 180^\circ - 45^\circ - 63,43^\circ = 71,57^\circ$ α : $\alpha = 180^\circ - \alpha_1 = 180^\circ - 71,57^\circ = 108,43^\circ$ Der Winkel S_1S_2R hat $108,43$ °, ist also stumpf.

