Level 2 - Fortgeschritten - Blatt 1

Dokument mit 21 Aufaahen

Aufgabe A1

Bilde die Ableitungen mit Hilfe der entsprechenden Ableitungsregel.

$f_1(x) = 0.5 f_1'(x) =$	
$f_2(x) = 0.5x f_2'(x) =$	31644 6 454
$f_3(x) = 0.5x^2 f_3'(x) =$	
$f_4(x) = -cx^3 \qquad \qquad f_4'(x) =$	
$f_5(x) = yx^4 \qquad \qquad f_5'(x) =$	
$f_6(t) = t^2 + 1$ $f_6'(t) =$	
$f_7(t) = 0.5t^2 + q$ $f_7'(t) =$	

Aufgabe A2

Bilde die Ableitungen mit Hilfe der entsprechenden Ableitungsregel.

$f_1(x) = \frac{1}{x}$	$f_1'(x) =$
$f_2(x) = \frac{1}{4x}$	$f_2'(x) =$
$f_3(x) = \frac{5}{x^2}$	$f_3'(x) =$
$f_4(x) = \frac{a}{x^3} + 7$	$f_4'(x) =$
$f_5(x) = b^{-1}x^{-3} + 6$	$f_5'(x) =$
$f_6(t) = \frac{e^2}{t}$	$f_6'(t) =$
$f_7(t) = \frac{25x}{t^4}$	$f_7'(t) =$

Aufgabe A3

Bilde die Ableitungen mit Hilfe der entsprechenden Ableitungsregel.

$f_1(x) = x^{\frac{1}{2}} + 6$	$f_1'(x) =$
$f_2(x) = \frac{0.5}{x^2} - 9$	$f_2'(x) =$
$f_3(x) = \frac{b}{x^4} + p \cdot q$	$f_3'(x) =$
$f_4(x) = ax^{-5} + 18$	$f_4'(x) =$
$f_5(x) = bx^{-6} - 17$	$f_5'(x) =$
$f_6(t) = e^2 t^{-2} + 2,5$	$f_6'(t) =$
$f_7(t) = 25xt^{-3} + \frac{1}{2}$	$f_7'(t) =$

O by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Level 2 - Fortgeschritten - Blatt 1

Lösung A1

$f_1(x) = 0.5; f_1'(x) = 0$	$f_2(x) = 0.5x; f_2'(x) = 0.5$
$f_3(x) = 0.5x^2; f_3h'(x) = x$	$f_4(x) = -cx^3; f_4'(x) = -3cx^2$
$f_5(x) = yx^4; f_5'(x) = 4yx^3$	$f_6(t)t^2 + 1; f_6'(t) = 2t$
$f_7(t) = 0.5t^2 + q; f_7'(t) = t$	

Lösung A2

$f_1(x) = \frac{1}{x}; f_1'(x) = -\frac{1}{x^2}$	$f_2(x) = \frac{1}{4x}; f_2'(x) = -\frac{1}{4x^2}$
$f_3(x) = \frac{5}{x^2}; f_3'(x) = -\frac{10}{x^3}$	$f_4(x) = \frac{a}{x^3} + 7; f_4'(x) = -\frac{3a}{x^4}$
$f_5(x) = b^{-1}x^{-3}; f_5'(x) = -3b^{-1}x^{-4}$	$f_6(t) = \frac{e^2}{t}; f_6'(t) = -\frac{e^2}{t^2}$
$f_7(t) = \frac{25x}{t^4}; f_7'(t) = \frac{-100x}{t^5}$	

Lösung A3

$f_1(x) = x^{\frac{1}{2}} + 6; f_1'(x) = \frac{1}{2x^{\frac{1}{2}}}$	$f_2(x) = \frac{0.5}{x^2} - 6; f_2'(x) = -\frac{1}{x^3}$
$f_3(x) = \frac{b}{x^4} + pq; f_3'(x) = -\frac{4b}{x^5}$	$f_4(x) = ax^{-5}; f_4'(x) = -5ax^6$
$f_5(x) = bx^{-6}; f_5'(x) = -6bx^{-7}$	$f_6(t) = e^2 t^{-2}; f_6'(t) = -2e^2 t^{-3}$
$f_7(t) = 25xt^{-3}; f_7(t) = -75xt^{-4}$	