Level 3 - Expert - Blatt 1 Dokument mit 25 Aufgaben

Aufgabe A1

Es sei $k, m, n \in \mathbb{Z}$. Bestimme f'(x) für f.

a)
$$f(x) = x^k$$

b)
$$f(x) = x^{2n+1}$$

c)
$$f(x) = x^{3k}$$

d)
$$f(x) = x^{3-m}$$

e)
$$f(x) = x^{2k-1+m}$$

f)
$$f(x) = x^{3k}$$

f) $f(x) = x^{-n+5}$

$$g) f(x) = x^{1-3n}$$

h)
$$f(x) = x^{-4+6k}$$

$$f(x) = x^{\frac{n}{4}}$$

$$j) f(x) = x^{\frac{2m-1}{5}}$$

$$\mathsf{k)} \quad f(x) = x^{\frac{n}{2k}}$$

$$f(x) = x^{\frac{m+1}{n}}$$

Aufgabe A2

In welchen Punkten hat der Graph der Funktion f die Steigung m?

a)
$$f(x) = x^4$$
; $m = 4$

b)
$$f(x) = x^3$$
; $m = 12$

b)
$$f(x) = x^3$$
; $m = 12$ c) $f(x) = x^{100}$; $m = \frac{100}{2^{99}}$

d)
$$f(x) = x^0$$
; $m = 1$

e)
$$f(x) = x^6$$
; $m = 18750$ f) $f(x) = x^{-1}$; $m = -1$

f)
$$f(x) = x^{-1}$$
; $m = -1$

<u>Aufgabe A</u>3

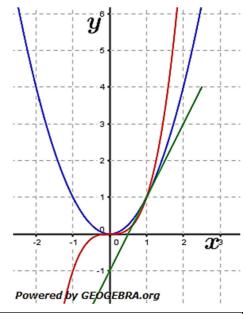
Untersuche:

- Gibt es zu jeder Geraden y = mx + c mit $c \in \mathbb{R}$ eine parallele Tangente an den Graphen der Funktion f mit $f(x) = x^n$; $n \in \mathbb{Z} \setminus \{0, 1\}, n$ ungerade?
- b) Gibt es zu jeder Geraden y = mx + c mit $c \in \mathbb{R}$ eine parallele Tangente an den Graphen der Funktion f mit $f(x) = x^n$; $n \in \mathbb{Z}$, n gerade?
- c) Von einem Punkt P sollen Tangenten an den Graphen von f mit $f(x) = x^{2n}$; $n \in \mathbb{N}^*$ gelegt werden. Gibt es Punkte im Koordinatensystem, für die dies nicht möglich ist?

Aufgabe A4

Die Graphen aller Funktionen f_n mit $f_n(x) = x^n$; $n \in \mathbb{N}^*$ schneiden sich in P(1|1).

- Bestimme die Tangentensteigungen von f_2 und f_3 in P. Berechne daraus den Schnittwinkel der beiden Tangenten.
- Weise nach, dass im Punkt P(1|1) für den b) Schnittwinkel der Tangenten von f_n und f_{n+1} gilt: $\tan(\alpha) = \frac{1}{n^2 + n + 1}$.
- Welchen Wert muss n mindestens haben, c) dass sich die Graphen von f_n und f_{n+1} in P(1|1) unter3 einem Winkel kleiner als 1° schneiden?
- d) Die Graphen Funktion der für $n \in \mathbb{N}^*$ schneiden sich ebenfalls in P(1|1). Führe eine zu den Teilaufgaben b) und c) analoge Betrachtung für diese Hyperbeln n-ter Ordnung durch.



Für den Schnittwinkel α zweier Geraden mit den Steigungen m_1

und
$$m_2$$
 gilt (für $m_1 > m_2$):
$$tan\alpha = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$$

O by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schüle und Studium www.fit-in-mathe-online.de a of man () a of man () a

Dr.-Ing. Melnolf Müller: / webmaster@fit-in-mathe-online.de