Lösung A1

Differenzenquotient:

$\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{x+h-x}=\frac{(x+h)^{n}-x^{n}}{h}$
Die Auflösung der binomischen $(x+h)^{n}$ Formel n-ten Grades erfolgt gemäß dem Binomialkoeffizienten nach:

$$
(a+b)^{n}=\binom{n}{0} \cdot a^{n}+\binom{n}{1} \cdot a^{n-1} \cdot h+\binom{n}{2} \cdot a^{n-2} \cdot h^{2}+\cdots+\binom{n}{n-1} \cdot a \cdot b^{n-1}+\binom{n}{n} \cdot b^{n}
$$

Wegen $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ ist z. B. $\binom{n}{4}=\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}=\frac{1}{24} n \cdot(n-1) \cdot(n-2) \cdot(n-3)$.

Daraus folgt:

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{x^{n}+n \cdot x^{n-1} \cdot h+\frac{1}{2} \cdot n \cdot(n-1) \cdot x^{n-2} \cdot h^{2}+\frac{1}{6} \cdot n \cdot(n-1) \cdot(n-2) \cdot x^{n-3} \cdot h^{3}+\cdots+n \cdot x \cdot h^{n-1}+h^{n}-x^{n}}{h} \\
&=\frac{x^{n}+h\left(n \cdot x^{n-1}+\frac{1}{2} \cdot n \cdot(n-1) \cdot x^{n-2} \cdot h+\frac{1}{6} \cdot n \cdot(n-1) \cdot(n-2) \cdot x^{n-3} \cdot h^{2}+\cdots+n \cdot x \cdot h^{n-2}+h^{n-1}\right)-x^{n}}{h} \\
&=n \cdot x^{n-1}+\frac{1}{2} \cdot n \cdot(n-1) \cdot x^{n-2} \cdot h+\frac{1}{6} \cdot n \cdot(n-1) \cdot(n-2) \cdot x^{n-3} \cdot h^{2}+\cdots+n \cdot x \cdot h^{n-2}+h^{n-1} \\
& \lim _{h \rightarrow 0} n \cdot x^{n-1}+\frac{1}{2} \cdot n \cdot(n-1) \cdot x^{n-2} \cdot h+\frac{1}{6} \cdot n \cdot(n-1) \cdot(n-2) \cdot x^{n-3} \cdot h^{2}+\cdots+n \cdot x \cdot h^{n-2}+h^{n-1} \\
&=n \cdot x^{n-1} \quad \text { q.e.d. }
\end{aligned}
$$

