Level 3 - Expert - Blatt 1

Lösung A1

 $f(x) = \log_a(b \cdot x)$

Um die Ableitung zu bewerkstelligen, wenden wir zunächst einmal die Logarithmengesetze an.

Ein Ausdruck $\log_a(x)$ lässt sich umschreiben zu beispielsweise $\frac{lg(x)}{lg(a)}$, mit lg als Abkürzung des 10er-Logarithmus (Logarithmus zur Basis 10).

Statt des 10er-Logarithmus kann auch der natürliche Logarithmus ln angewandt werden, so ist $log_a(x) = \frac{ln(x)}{ln(a)}$. Da wir aber die Ableitung von ln(x) mit $\frac{1}{x}$ kennen, gilt:

$$f(x) = \log_a(b \cdot x) = \frac{ln(b \cdot x)}{ln(a)} = \frac{1}{ln(a)} \cdot ln(b \cdot x)$$

In diesem Ausdruck ist $\frac{1}{ln(a)}$ ein Faktor, der nach der Faktorregel erhalten bleibt und $ln(b \cdot x)$ wird mithilfe der Kettenregel abgeleitet zu $\frac{b}{b \cdot x} = \frac{1}{x}$, somit ist

$$f'(x) = \frac{1}{\ln(a) \cdot x}$$
 q.e.d.

Lösung A2

 $f(x) = \log_a(b \cdot x^c)$

Um die Ableitung zu bewerkstelligen, wenden wir zunächst einmal die Logarithmengesetze an, denn $\log_a(b \cdot x^c) = c \cdot \log_a(b \cdot x)$. (Ein Logarithmus holt den Exponenten nach vorne).

Weiterhin ist $c \cdot \log_a(b \cdot x) = c \cdot \frac{\ln(b \cdot x)}{\ln(a)} = \frac{c}{\ln(a)} \cdot \ln(b \cdot x)$ mit $\frac{c}{\ln(a)}$ als Faktor, der nach der Faktorregel erhalten bleibt.

Gemäß Aufgabe 1 ist ist die Ableitung von $ln(b \cdot x)$ gleich $\frac{1}{x}$, sodass gilt:

$$f'(x) = \frac{c}{\ln(a) \cdot x}$$
 q.e.d.