Differenzialrechnung

Ifgabenblatt Funktionsklassen

zu ganzrationalen Funktionen mit Parameter

Level 3 - Fortgeschritten - Blatt 2 Dokument mit 24 Aufgaben

Aufgabe A1

Bestimme diejenigen Werte von t, für die der Graph von fachsensymmetrisch zur y-Achse oder punktsymmetrisch zum Ursprung

- $f_t(x) = x^3 + 2tx^2 + tx$ a)
- b) $f_t(x) = (x t) \cdot (x + 2)$ $f_t(x) = (x+t)^2 - 4x$ c)

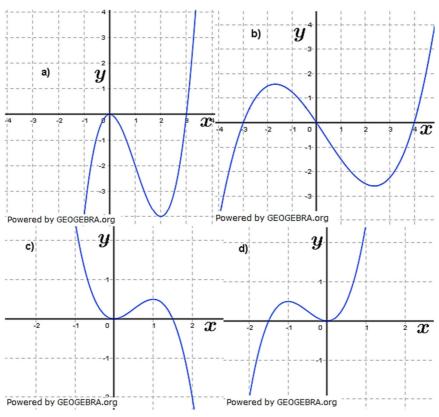
Aufgabe A2

Bestimme alle Werte von t so, dass

- die Funktion f_t mit $f_t(x) = 7(x-t)^2(x-2)$ eine dreifache Nullstelle hat.
- die Funktion f_t mit $f_t(x) = (x+2)(x-t)(x-3)(x-4)$ eine doppelte Nullstelle b)
- der Graph der Funktion f_t mit $f_t(x) = 5(x-2)(x-4)(x-t)$ die x-Achse c) berührt.

Aufgabe A3

Gegeben ist für $t \in \mathbb{R}$ eine Funktion f_t durch $f_t(x) = x^2 \cdot \left(x - \frac{3}{2}t\right)$; $x \in \mathbb{R}$. Das Schaubild von f_t ist K_t . Welche Schaubilder gehören zu einer Funktion f_t , welche nicht? Begründe deine Entscheidung und ermittle gegebenenfalls den Wert von t.



6 by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Differenzialrechnung

Aufgabenblatt Funktionsklassen

zu ganzrationalen Funktionen mit Parameter

© by Fit-in-Mathe-Online.de

Level 3 - Fortgeschritten - Blatt 2

Aufgabe A4

Zu jedem $t \in \mathbb{R}^*$ ist eine Funktion f_t gegeben durch $f_t(x) = \frac{1}{12}x(x-t)^2$; $x \in \mathbb{R}$. Das Schaubild von f_t ist K_t .

- a) Betrachte K_t für drei verschiedene Werte von t. Gib gemeinsame Eigenschaften der Schaubilder an. Zeichne K_6 .
- b) Zeige, dass jede Ursprungsgerade mit positiver Steigung m und $m \neq 3$ K_6 dreimal schneidet.

Aufgabe A5

Für jedes $t \in \mathbb{R}^*$ ist eine Funktion f_t geben durch $f_t(x) = \frac{1}{t}x^3 - 2x^2 + tx$; $x \in \mathbb{R}$. Das Schaubild von f_t ist K_t .

Betrachte Schaubilder für positive und negative Werte von t. Wie unterscheiden sich die Schaubilder für negative Werte von t von denen für positive Werte von t? Gib gemeinsame Eigenschaften der Schaubilder an. Skizziere zwei Schaubilder.

Aufgabe A6

Gegeben ist die Funktion f_t mit $f_t(x) = (x-t)^2 \cdot (x^2 + 4x + 4)$.

- a) Faktorisiere den Term so weit wie möglich.
- b) Gib mit Fallunterscheidung Anzahl, Lage und Vielfachheit der Nullstellen in Abhängigkeit von t an.
- c) Bestimme sämtliche Schnittpunkte der Graphen f_t mit den Koordinatenachsen.
- d) Bestimme t so, dass der zugehörige Graph durch den Punkt P(-1|1) verläuft.
- e) Zeichne den Graphen f_0 im Intervall [-3; 1].

Aufgabe A7

Die Funktion f_k und g_k mit k > 0 sind gegeben durch $f_k(x) = \frac{1}{k}x(kx-1)^2$ und $g_k(x) = 3kx^2 - 4x + \frac{1}{k}$.

- a) Gib die Lage und Vielfachheit der Nullstellen von f_k an.
- b) Bestimme die Nullstellen von g_k in Abhängigkeit von k und gib das Intervall an, in dem gilt $g_k \le 0$.
- c) Die beiden Funktionen haben eine gemeinsame Nullstelle. Gib die Koordinaten des gemeinsamen Schnittpunktes an und bestimme k so, dass die Abszisse des Schnittpunktes bei 3 liegt.
- d) Zeichne den Graphen von f_k und g_k für $k=\frac{1}{3}$ im Intervall [-1;4]. Für beide Koordinatenachsen gilt: 1LE=2 cm

Aufgabe A8

Gegeben ist die Funktion f_t durch $f_t(x) = t(x^3 + (t-4)x^2 + 4(1-t)x + 4t)$.

- a) Zeige, dass f_t eine Nullstelle bei 2 hat.
- b) Stelle f_t in faktorisierter Form dar.
- c) Bestimme die Anzahl und Vielfachheit der Nullstellen von f_t in Abhängigkeit von t.
- d) Berechne t so, dass P(1|2) auf f_t liegt.
- e) Zeichne für t = 1 den zugehörigen Graphen.
- © by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium

zu ganzrationalen Funktionen mit Parameter

© by Fit-in-Mathe-Online.de

Level 3 - Expert - Blatt 2

Lösung A1

- a) $f_t(x) = x^3 + 2tx^2 + tx$ f_0 mit $f_0(x) = x^3$ ist punktsymmetrisch zum Ursprung.
- b) $f_t(x) = (x t) \cdot (x + 2)$ f_2 mit $f_2(x) = (x - 2) \cdot (x + 2)$ ist achsensymmetrisch zur y-Achse.
- c) $f_t(x) = (x+t)^2 4x$ f_2 mit $f_2(x) = (x+2)^2 - 4x = x^2 + 4$ ist achsensymmetrisch zur y-Achse.

Lösung A2

- a) $t \text{ für } f_t(x) = 7(x-t)^2(x-2) \text{ mit dreifacher Nullstelle:}$ $t = 2 \text{ mit } f_2(x) = 7(x-2)^3$
- b) $t \text{ für } f_t(x) = (x+2)(x-t)(x-3)(x-4) \text{ mit einer doppelte Nullstelle:}$ $t = -2 \text{ mit } f_{-2}(x) = (x+2)^2(x-3)(x-4)$ $t = 3 \text{ mit } f_3(x) = (x+2)(x-3)^2(x-4)$ $t = 4 \text{ mit } f_4(x) = (x+2)(x-3)(x-4)^2$
- c) $t \operatorname{das} f_t(x) = 5(x-2)(x-4)(x-t)$ die x-Achse berührt: <u>Hinweis:</u> Eine Nullstelle, die -Achse berührt ist eine doppelte Nullstelle. t=2 mit $f_2(x)=5(x-2)^2(x-4)$ t=4 mit $f_4(x)=5(x-2)(x-4)^2$.

Lösung A3

Schaubild a)

$$t = 2 \text{ für } f_2(x) = x^2 \cdot (x - 3).$$

Doppelte Nullstelle bei $x_1 = 0$ und einfache Nullstelle bei $x_2 = 3$.

Schaubild b)

gehört zu keine Funktion f_t , da das Schaubild drei einfache Nullstellen aufweise.

Schaubild c)

gehört zu keine Funktion f_t . Zwar hat das Schaubild für t=1 die doppelte Nullstelle $x_1=0$ und die einfache Nullstelle $x_2=\frac{3}{2}$, jedoch verläuft das Schaubild aus dem zweiten Quadranten in den vierten Quadranten, was durch f_t nicht darstellbar ist.

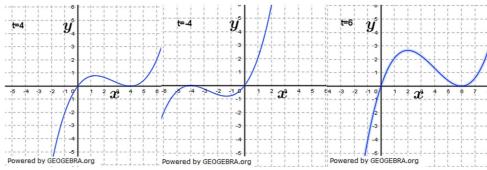
Schaubild d)

$$t = -1$$
 für $f_{-1}(x) = x^2 \cdot \left(x + \frac{3}{2}\right)$.

Doppelte Nullstelle bei $x_1 = 0$ und einfache Nullstelle bei $x_2 = -\frac{3}{2}$.

Lösung A4

a) K_t für verschiedene Werte von t:



© by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Aufgabenblatt Funktionsklassen

zu ganzrationalen Funktionen mit Parameter

Level 3 - Expert - Blatt 2

Gemeinsame Eigenschaften:

Alle Schaubilder gehen durch den Ursprung.

Alle Schaubilder haben einen Berührpunkt mit der x-Achse.

$$f_t(x) \to -\infty$$
 für $x \to -\infty$

$$f_t(x) \to \infty \text{ für } x \to \infty$$

Alle Schaubilder verlaufen aus dem III. Quadranten in den I. Quadranten.

Eine Ursprungsgerade hat die Funktionsgleichung g(x) = mx. b)

$$f_6(x) = \frac{1}{12}x(x-6)^2$$
. Schnittpunktberechnung: $g(x) \cap f_6(x)$.

$$\frac{1}{12}x(x-6)^2 = mx \Longrightarrow \frac{1}{12}x(x-6)^2 - mx = 0$$

$$x\left(\frac{1}{12}(x-6)^2 - m\right) = 0$$

$$x_1 = 0$$
 V $(\frac{1}{12}(x-6)^2 - m) = 0$ | Satz vom Nullprodukt

$$\frac{1}{12}x^2 - x + 3 - m = 0 \qquad | \qquad 12$$

$$x^2 - 12x + 36 - 12m = 0$$

$$x_{2,3} = -6 \pm \sqrt{36 - 36 + 12m} = -6 \pm \sqrt{12m}$$

Für positive m und m=3 gibt es nur eine weitere Schnittstelle bei $x_2 = -12$. Für $m \neq 3$ gibt es außer dem Schnittpunkt im Ursprung 2 weitere Schnittstellen $x_2 = -6 + \sqrt{12m}$ sowie $x_3 = -6 - \sqrt{12m}$.

Lösung A5

$$\frac{1}{f_t(x) = \frac{1}{t}x^3 - 2x^2 + tx}$$

Für positive t liegt der Berührpunkt rechts von der y-Achse und es gilt:

$$f_t(x) \to -\infty$$
 für $x \to -\infty$

$$f_t(x) \to \infty \text{ für } x \to \infty$$

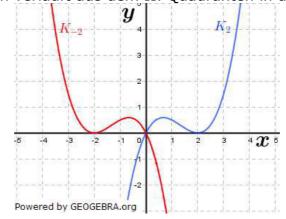
Der Graph der Funktion verläuft aus dem III. Quadranten in den I. Quadranten.

Für negative t liegt der Berührpunkt links von der y-Achse und es gilt:

$$f_t(x) \to -\infty$$
 für $x \to \infty$

$$f_t(x) \to \infty \text{ für } x \to -\infty$$

Der Graph der Funktion verläuft aus dem II. Quadranten in den IV. Quadranten.



Lösung A6

$$f_t(x) = (x-t)^2 \cdot (x^2 + 4x + 4).$$

Faktorisieren:

$$(x-t)^2 \cdot (x^2 + 4x + 4) = (x-t)^2 \cdot (x+2)^2 = ((x-t)(x+2))^2$$

Anzahl, Lage und Vielfachheit der Nullstellen b)

Für t = -2 vierfache Nullstelle in N(-2|0).

Für $t \neq -2$ doppelte Nullstellen in $N_1(t|0)$ und $N_2(-2|0)$.

(a) by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium

www.fit-in-mathe-online.de

zu ganzrationalen Funktionen mit Parameter

Level 3 - Expert - Blatt 2

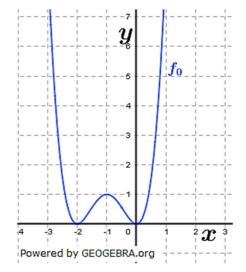
Schnittpunkte der Graphen f_t mit den Koordinatenachsen c) Schnittpunkt mit der y-Achse mit $f_t(0)$ ist $S_v(0|4t^2)$ Nullstellen:

$$(x-t)^2 \cdot (x+2)^2 = 0$$

 $N_1(t|0); N_2(-2|0)$

Satz vom Nullprodukt

t für $f_t(-1) = 1$: $1 = (-1 - t)^2 \cdot (-1 + 2)^2$ d) $t^2 + 2t + 1 = 1$ t(t+2) = 0 $t_1 = 0$; $t_2 = -2$



<u>Lösung A7</u>

$$f_k(x) = \frac{1}{k}x(kx-1)^2$$
 und $g_k(x) = 3kx^2 - 4x + \frac{1}{k}$

Lage und Vielfachheit der Nullstellen von f_k $N_1(0|0)$ einfache Nullstelle

$$(kx-1)^2 = 0 ==> x = \frac{1}{k};$$

 $N_2\left(\frac{1}{k}\middle|0\right)$ doppelte Nullstelle.

Nullstellen von g_k in Abhängigkeit von k, Intervall in dem $g_k \le 0$ gilt:

$$3kx^2 - 4x + \frac{1}{k} = 0$$

$$3kx^{2} - 4x + \frac{1}{k} = 0$$

$$x^{2} - \frac{4}{3k}x + \frac{1}{3k^{2}} = 0$$

$$x_{1,2} = \frac{2}{3k} \pm \sqrt{\frac{4}{9k^{2}} - \frac{1}{3k^{2}}}$$

$$p/q$$
-Formel

$$= \frac{2}{3k} \pm \sqrt{\frac{1}{9k^2}} = \frac{2}{3k} \pm \frac{1}{3k}$$

$$x_1 = \frac{1}{k}; \quad x_2 = \frac{1}{3k}$$

Wegen k > 0 ist g_k eine nach oben geöffnete Parabel. $g_k(x)$ ist somit zwischen den beiden Nullstellen kleiner als Null:

$$g_k(x) < 0 \text{ in } I =]\frac{1}{3k}; \frac{1}{k}[.$$

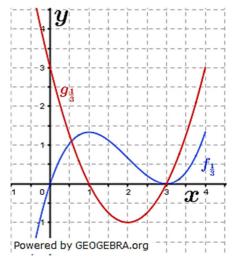
Koordinaten des gemeinsamen Schnittpunktes: c) $f_k(x) \cap g_k(x)$

Aus Teilaufgabe a) und b) ergibt sich eine gemeinsame Nullstelle bei $x_0 = \frac{1}{\nu}$.

$$k \text{ für } x_0 = 3$$
:

$$3 = \frac{1}{k} = > k = \frac{1}{3}$$

Zeichnung siehe Grafik rechts. d)



© by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium

www.fit-in-mathe-online.de

Aufgabenblatt Funktionsklassen

zu ganzrationalen Funktionen mit Parameter

© by Fit-in-Mathe-Online.de

Level 3 - Expert - Blatt 2

Lösung A8

$$\overline{f_t(x)} = \overline{t(x^3 + (t - 4)x^2 + 4(1 - t)x + 4t)}$$

a) Nachweis Nullstelle bei
$$x_0=2$$

$$t(2^3+(t-4)2^2+4(1-t)2+4t)=0$$
 Punktprobe mit $P(2|0)$
$$t(8+4t-16+8-8t+4t)=0$$
 0 = 0

b)
$$f_t(x) = t(x^3 + (t - 4)x^2 + 4(1 - t)x + 4t) = t(x^3 + t^2x^2 - 8tx + 16x^2 + 4x - 4tx + 4t)$$

$$f_t(x) = t(x^3 + (t - 4)x^2 + (4 - 4t)x + 4t)$$

$$x^3 + (t - 4)x^2 + (4 - 4t)x + 4t: (x - 2) = x^2 + (t - 2)x - 2t$$

$$\frac{-(x^3 - 2x^2)}{(t - 2)x^2 + (4 - 4t)x}$$

$$\frac{-(t - 2)x^2 - 2(t - 2)x}{-2tx + 4t}$$

$$x^{2} + (t-2)x - 2t = 0$$

$$x_{2,3} = -\frac{t-2}{2} \pm \sqrt{\left(\frac{t-2}{2}\right)^{2} + 2t} = -\frac{t-2}{2} \pm \sqrt{\frac{(t-2)^{2}}{4} + \frac{8t}{4}}$$

$$x_{2,3} = -\frac{t-2}{2} \pm \frac{1}{2} \cdot \sqrt{t^{2} - 4t + 4 + 8t} = -\frac{t-2}{2} \pm \frac{1}{2} \cdot \sqrt{(t+2)^{2}}$$

$$x_{2,3} = -\frac{t-2}{2} \pm \frac{t+2}{2}$$

$$x_{2} = \frac{-(t-2)+t+2}{2} = 2$$

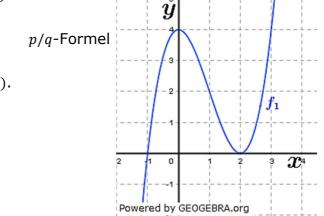
$$x_{3} = \frac{-(t-2)-t-2}{2} = -t$$

$$x^{2} + (t-2)x - 2t = (x-2)(x+t)$$

$$f_{t}(x) = t \cdot (x-2)(x+t)(x-2) = t \cdot (x-2)^{2}(x+t)$$

-(-2tx + 4t)

- c) Anzahl und Vielfachheit der Nullstellen von f_t : Für t=-2 ist $N_1(2|0)$ dreifache Nullstelle. Für $t\neq -2$ ist $N_1(2|0)$ doppelte Nullstelle und $N_2(-t|0)$ einfache Nullstelle.
- d) t für $f_t(1) = 2$: $f_t(1) = 2 = t \cdot (1-2)^2 (1+t) = t(1+t)$ $t^2 + t - 2 = 0$ $t_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 2} = -\frac{1}{2} \pm \frac{3}{2}$ | p/q-Forn $t_1 = 1$; $t_2 = -2$ f_1 bzw. f_{-2} enthält den Punkt P(1|2). e) Zeichnung siehe Grafik rechts.



© by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de