Aufgabenblatt Funktionsklassen zu gebrochen-rationalen Funktionen

Level 1 - Grundlagen - Blatt 1

Dokument mit 22 Aufgaben

Aufgabe A1

Gegeben ist die Funktion f mit $f(x) = \frac{2x}{2x+3}$.

- Welche Zahl kann nicht in der Definitionsmenge enthalten sein? a)
- b) Berechne f(10), f(100), f(1000)
- Lege eine Wertetabelle an und zeichne den Graphen von f. c)
- Gib die Gleichungen der Asymptoten von f an. d)

Aufgabe A2

Gegeben ist die Funktion h mit $h(x) = \frac{1+x}{x-2}$.

- Bestimme die Nullstelle der Funktion h.
- b) An welcher Stelle nimmt die Funktion h den Wert 4 an?

Aufgabe A3

Bestimme den maximal möglichen Definitionsbereich nachfolgender

a)
$$f(x) = \frac{7x-2}{8x-4}$$

a)
$$f(x) = \frac{7x-2}{8x-4}$$

b) $f(x) = \frac{x^3}{(x-2)^2} + 7x$
c) $f(x) = \frac{1}{x(x-4)}$

c)
$$f(x) = \frac{1}{x(x-4)}$$

Aufgabe A4

Gib den maximal möglichen Definitionsbereich an und untersuche das Verhalten des Graphen in den Definitionslücken sowie für $x \to \pm \infty$. Skizziere den jeweiligen Graphen.

a)
$$f(x) = \frac{2-x}{0.2x^2 - 0.8}$$

b)
$$g(x) = \frac{0.5x^2 - 2}{1 - x}$$

c)
$$h(x) = x - 1 + \frac{2x}{x^2 + 1}$$

c)
$$h(x) = x - 1 + \frac{2x}{x^2 + 1}$$

d) $k(x) = \frac{x}{2x + 4} - \frac{x^2 + 1}{x}$
e) $m(x) = \frac{2 + x + 0,5x^2}{x^2 - 4}$

e)
$$m(x) = \frac{2x+4}{2+x+0.5x^2}$$

f)
$$n(x) = \frac{2}{x} + \frac{x^2}{2x-1}$$

Aufgabe A5

Gib den Term einer (möglichst einfachen) gebrochen-rationalen Funktion f an, die die folgenden Eigenschaften besitzt;

- Der Graph von f berührt die -Achse an der Stelle x = -1; Die Funktion hat eine Polstelle an der Stelle x = 3.
- Der Graph von f hat eine Polstelle ohne Vorzeichenwechsel bei $x_1 = 2$ und b) für $x \to \pm \infty$ ist die Asymptote y = 0.5.
- c) Der Graph von f hat eine Polstelle ohne Vorzeichenwechsel bei $x_1 = -1$ und $x_2 = 2$ und für $x \to \pm \infty$ ist die Asymptote y = 0.5x - 1.
- Der Graph von f hat eine Polstelle bei $x_1 = -2$, ist punktsymmetrisch zum d) Ursprung und hat für $x \to \pm \infty$ ist die Asymptote y = 0.
- (a) by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

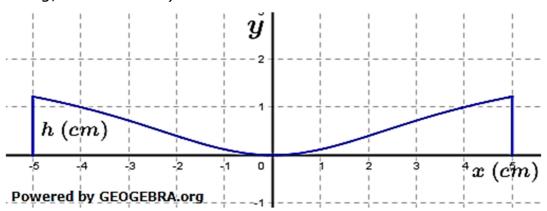
Aufgabenblatt Funktionsklassen zu gebrochen-rationalen Funktionen

© by Fit-in-Mathe-Online.de

Level 1 - Grundlagen - Blatt 1

Aufgabe A6

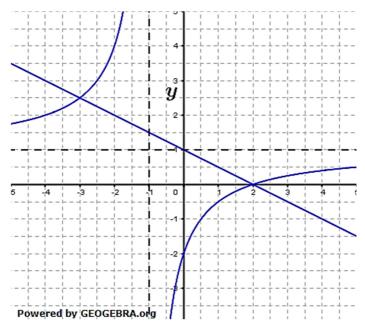
Der Querschnitt einer kreisrunden Wasserschale wird von drei Strecken und dem Graphen der Funktion f mit $f(x) = \frac{4x^2+32}{x^2+16} - 2$ berandet (siehe Zeichnung; Maßstab 1:10).



Berechne die Wassertiefe in der Schale, wenn die Wasserbreite $40\ cm$ beträgt

Aufgabe A7

Gegeben ist der Graph einer linearen sowie gebrochen-rationalen Funktion.



- a) Die Grafik zeigt die Graphen der Funktionen mit den Funktionsgleichungen $y=\frac{x-2}{1+x}$ sowie $y=-\frac{1}{2}x+1$. Bestimme an Hand der Grafik die Lösungsmenge der Gleichung $\frac{x-2}{1+x}=-\frac{1}{2}x+1$.
- b) Bestimme mit Hilfe des gegebenen Funktionsgraphen die Lösungsmenge der Gleichung $\frac{x-2}{1+x} = 1$.
- © by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Aufgabenblatt Funktionsklassen

zu gebrochen-rationalen Funktionen

Level 1 - Grundlagen - Blatt 1

Lösung A1

$$\overline{f(x) = \frac{2x}{2x+3}}.$$

Werte von x, bei denen der Nenner Null wird, sind nicht in der Definitionsmenge enthalten.

$$2x + 3 = 0$$

$$2x = -3$$

$$x = -\frac{3}{2}$$

$$\mathbb{D} = \mathbb{R} \setminus \left\{ -\frac{3}{2} \right\}$$

 $\mathbb{D} = \mathbb{R} \setminus \left\{ -\frac{3}{2} \right\}$ $f(10) = \frac{2 \cdot 10}{2 \cdot 10 + 3} = \frac{20}{23} \approx 0,87$ $f(100) = \frac{2 \cdot 100}{2 \cdot 100 + 3} = \frac{200}{203} \approx 0,985$ $f(1000) = \frac{2 \cdot 1000}{2 \cdot 1000 + 3} = \frac{2000}{2003} \approx 0,9985$

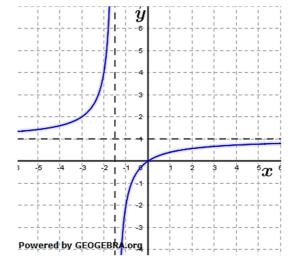
c)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
	x	-5	-4	-3	-2	-1	0	1	2	3	4	5	
	2x	10	8	2	4	2	0	2	4	2	8	10	
	$\overline{2x+3}$	7	- 5	2	4	-2	U	5	7	$\frac{\overline{3}}{3}$	$\overline{11}$	13	

Gleichung des Pols: $x = -\frac{3}{2}$ d) Verhalten $x \to \pm \infty$:

$$\lim_{x \to |\infty|} \frac{2x}{2x+3} = 1$$

Gleichung der waagrechten

Asymptote: y = 1



Lösung A2

$$\frac{1}{h(x)} = \frac{1+x}{x-2}.$$

a) Nullstellen mit h(x) = 0.

$$\frac{1+x}{x-2} = 0$$
$$1+x=0$$

$$\cdot (x-2)$$

$$x = -1$$

$$N_1(-1|0)$$

b) x für h(x) = 4 $4 = \frac{1+x}{x-2}$

$$\cdot (x-2)$$

$$4(x-2) = 1 + x$$

$$4x - 8 = 1 + x$$

$$-x$$
; +8

$$3x = 9$$

$$x = 3$$

$$h(3) = 4$$

- (a) by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de
 - Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de

Ifgabenblatt Funktionsklassen

zu gebrochen-rationalen Funktionen

Level 1 – Grundlagen – Blatt 1

Lösung A3

Bestimmung Definitionsbereiche. Wir müssen die x-Werte vom Definitionsbereich ausschließen, für die der Nenner der Funktionsterms Null wird.

a)
$$f(x) = \frac{7x-2}{8x-4}$$

$$8x - 4 = 0$$

$$8x = 4$$

$$x = \frac{1}{2}$$

$$\mathbb{D} = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$

b)
$$f(x) = \frac{x^3}{(x-2)^2} + 7x$$

 $(x-2)^2 = 0$

$$x = 2$$

$$x = Z$$

$$\mathbb{D}=\mathbb{R}\setminus\{2\}$$

c)
$$f(x) = \frac{1}{x(x-4)}$$

$$x(x-4)=0$$

$$x_1 = 0; \quad x - 4 = 0;$$

$$x_2 = 4$$

$$\overline{\mathbb{D}} = \mathbb{R} \setminus \{0; 4\}$$

Satz vom Nullprodukt

Lösung A4

Jeweils maximal möglicher Definitionsbereich sowie Untersuchung der Pole und der waagrechten Asymptoten.

a)
$$f(x) = \frac{2-x}{0.2x^2 - 0.8}$$

$$0.2x^2 - 0.8 = 0$$

$$0.2x^2 = 0.8$$

$$x^2 = 4$$

$$x_{1,2} = \pm 2$$

$$\mathbb{D} = \mathbb{R} \setminus \{-2; 2\}$$

Untersuchung, ob hebbare Definitionslücken vorhanden:

$$f(-2) = \frac{2 - (-2)}{0, 2(-2)^2 - 0.8} = \frac{4}{0}$$

Pol mit Gleichung
$$x = -2$$

$$f(2) = \frac{2-2}{0.2 \cdot 4 - 0.8} = \frac{0}{0}$$

Bei x = 2 handelt es sich um eine hebbare Definitionslücke.

Untersuchung von x = -2 auf VZW:

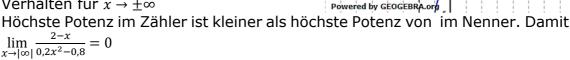
$$x = -2$$

Für
$$x_2 \to -2$$
 läuft $f(x) \to +\infty$

Für
$$x_5 \to -2$$
 läuft $f(x) \to -\infty$

Der Pol bei x = -2 ist ein Pol mit VZW.

Verhalten für $x \to \pm \infty$



Waagrechte Asymptote mit der Gleichung y = 0.

Aufgabenblatt Funktionsklassen

zu gebrochen-rationalen Funktionen

Level 1 - Grundlagen - Blatt 1

b)
$$g(x) = \frac{0.5x^2 - 2}{1 - x}$$
$$1 - x = 0$$
$$x = 1$$
$$\mathbb{D} = \mathbb{R} \setminus \{1\}$$

Untersuchung, ob hebbare Definitionslücken vorhanden:

$$g(1) = \frac{0.5 - 2}{1 - 1} = \frac{-1.5}{0}$$

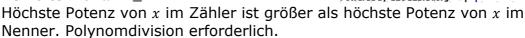
Keine hebbare Definitionslücke

Für $x_{\nearrow} \to 1$ läuft $g(x) \to -\infty$

Für $x_{5} \to 1$ läuft $g(x) \to +\infty$

Der Pol bei x = 1 ist ein Pol mit VZW.

Verhalten für $x \to \pm \infty$



$$0.5x^{2} - 2: (-x + 1) = -0.5x - 0.5 - \frac{1.5}{1-x}$$

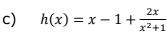
$$-(0.5x^{2} - 0.5x)$$

$$0.5x - 2$$

$$-(0.5x - 0.5)$$

$$-1.5$$

Schiefe Asymptote mit der Gleichung y = -0.5x - 0.5.



Da der Nenner $x^2 + 1$ nicht Null werden kann für alle $x \in \mathbb{R}$ gilt:

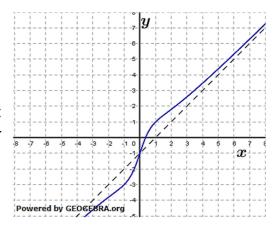
$$\mathbb{D} = \mathbb{R}$$

Die Funktion besitzt keine Definitionslücke. Verhalten für $x \to \pm \infty$

Höchste Potenz von x im Zähler von $\frac{2x}{x^2+1}$ ist kleiner als höchste Potenz von x im Nenner von $\frac{2x}{x^2+1}$. Somit:

$$\lim_{x \to |\infty|} \frac{\sum_{x=1}^{x^2+1}}{x^2+1} = 0$$

Der Graph der Funktion hat die schiefe Asymptote y = x - 1.



 $k(x) = \frac{x}{2x+4} - \frac{x^2+1}{x}$ | Umformen zu einem einzigen Bruch $k(x) = \frac{x^2 - (x^2+1)(2x+4)}{(2x+4) \cdot x} = \frac{x^2 - (2x^3 + 4x^2 + 2x + 4)}{2x^2 + 4x} = \frac{-2x^3 - 3x^2 - 2x - 4}{2x(x+2)}$

$$x(x+2) = 0$$
 | Satz vom Nullprodukt

$$x_1 = 0$$
; $x_2 = -2$

Untersuchung, ob hebbare Definitionslücken vorhanden:

$$k(0) = \frac{-4}{0}$$
 keine hebbare Definitionslücke

$$k(-2) = \frac{4}{0}$$
 keine hebbare Definitionslücke

Pol mit Gleichung x = 0

Für
$$x_2 \to 0$$
 läuft $k(x) \to +\infty$

Für
$$x_{5} \to 0$$
 läuft $k(x) \to -\infty$

$$x = 0$$
 ist Pol mit VZW

(a) by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium

www.fit-in-mathe-online.de

Aufgabenblatt Funktionsklassen

zu gebrochen-rationalen Funktionen

Level 1 - Grundlagen - Blatt 1

Powered by GEOGEBR

Pol mit Gleichung x = -2

Für
$$x_2 \to -2$$
 läuft $k(x) \to -\infty$

Für
$$x_{\nwarrow} \to -2$$
 läuft $k(x) \to +\infty$

x = -2 ist Pol mit VZW.

Verhalten für $x \to \pm \infty$

Höchste Potenz von x im Zähler ist größer als höchste Potenz von x im Nenner.

Polynomdivision erforderlich:

$$(-2x^3 - 3x^2 - 2x - 4): (2x^2 + 4x) = -x + 0.5 - \frac{4}{2x^2 + 4x}$$

$$-(-2x^3 - 4x^2)$$

$$\lim_{x \to |\infty|} \frac{4}{2x^2 + 4x} = 0$$

Der Graph der Funktion hat die schiefe Asymptote y = -x + 0.5.

e)
$$m(x) = \frac{2+x+0.5x^2}{x^2-4}$$

$$x^2 - 4 = 0$$

$$x_{1,2} = \pm 2$$

$$\mathbb{D} = \mathbb{R} \setminus \{-2; 2\}$$

Untersuchung, ob hebbare Definitionslücken vorhanden:

$$m(-2) = \frac{2-2+0,5\cdot 2^2}{4-4} = \frac{2}{0}$$

Keine hebbare Definitionslücke

$$m(2) = \frac{2+2+0,5\cdot 2^2}{4-4} = \frac{8}{0}$$

Keine hebbare Definitionslücke

Untersuchung von x = -2 auf VZW:

Für
$$x_2 \rightarrow -2$$
 läuft $m(x) \rightarrow +\infty$

Für
$$x_{\gamma} \rightarrow -2$$
 läuft $m(x) \rightarrow -\infty$

Der Pol bei x = -2 ist ein Pol mit VZW.

Untersuchung von x = 2 auf VZW:

Für
$$x_2 \to 2$$
 läuft $m(x) \to -\infty$

Für
$$x_{5} \rightarrow 2$$
 läuft $m(x) \rightarrow +\infty$

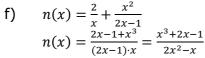
Der Pol bei x = 2 ist ein Pol mit VZW.

Verhalten für $x \to \pm \infty$

Höchste Potenz im Zähler ist gleich der höchsten Potenz von im Nenner.

$$\lim_{x \to |\infty|} \frac{2 + x + 0.5x^2}{x^2 - 4} = \frac{0.5}{1} = 0.5$$

Waagrechte Asymptote mit der Gleichung y = 0.5.

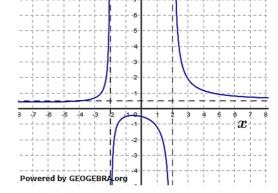


$$n(x) = \frac{2x - 1 + x}{(2x - 1) \cdot x} = \frac{x^{3} + 2x - 1}{2x^{2} - x}$$

$$x(2x-1)=0$$

$$x_1 = 0; \quad x_2 = \frac{1}{2}$$

$$\mathbb{D} = \mathbb{R} \setminus \left\{0; \frac{1}{2}\right\}$$



- Umformen zu einem einzigen Bruch
- Satz vom Nullprodukt
- (a) by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium

www.fit-in-mathe-online.de

Aufgabenblatt Funktionsklassen zu gebrochen-rationalen Funktionen

Lösungen by Fit-in-Mathe-Online.de

Level 1 - Grundlagen - Blatt 1

Untersuchung, ob hebbare Definitionslücken vorhanden:

$$n(0) = \frac{-1}{0}$$

Keine hebbare Definitionslücke

$$n\left(\frac{1}{2}\right) = \frac{0,125}{0}$$

Keine hebbare Definitionslücke

Untersuchung von x = 0 auf VZW:

Für
$$x_2 \to 0$$
 läuft $m(x) \to -\infty$

Für
$$x_{5} \to 0$$
 läuft $m(x) \to +\infty$

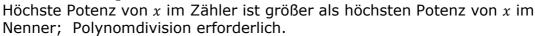
Der Pol bei x = 0 ist ein Pol mit VZW.

Untersuchung von $x = \frac{1}{2}$ auf VZW:

Für
$$x_{\nearrow} \to \frac{1}{2}$$
 läuft $m(x) \to -\infty$

Für
$$x_{\nwarrow} \to \frac{1}{2}$$
 läuft $m(x) \to +\infty$

Der Pol bei $x = \frac{1}{2}$ ist ein Pol mit VZW.



$$(x^3 + 2x - 1)$$
: $(2x^2 - x) = 0.5x + 0.25 + \frac{2.25x - 1}{2x^2 - x}$

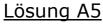
$$\frac{-(x^3 - 0.5x^2)}{0.5x^2 + 2x}$$

$$\frac{-(0.5x^2 - 0.25x)}{2.25x - 1}$$

$$\lim_{x \to |\infty|} \frac{2,25x-1}{2x^2 - x} = 0$$

Waagrechte Asymptote mit der Gleichung y = 0.5.

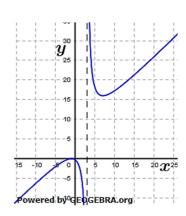
Der Graph der Funktion hat die schiefe Asymptote y = 0.5x + 0.25.



a) Der Graph von f berührt die x-Achse an der Stelle x=-1 bedeutet eine doppelte Nullstelle bei x=-1. Dies führt zu $(x+1)^2$ im Zähler des Funktionsterms.

Die Funktion hat eine Polstelle an der Stelle x = 3. Dies führt zu x - 3 im Nenner der Funktionsterms.

$$f(x) = \frac{(x+1)^2}{x-3}.$$



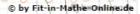
b) Der Graph von f hat eine Polstelle ohne Vorzeichenwechsel bei $x_1 = 2$ bedeutet $(x - 2)^2$ im Nenner des Funktionsterms.

Für $x \to \pm \infty$ ist die Asymptote y=0.5 bedeutet eine Verschiebung der Funktion in y-Richtung um 0.5 LE nach oben.

$$f(x) = \frac{1}{(x-2)^2} + 0.5.$$

(a) by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben fu

www.fit-in-mathe-online.de



ufgabenblatt Funktionsklassen

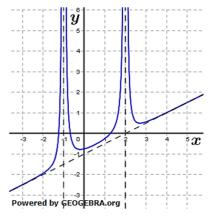
zu gebrochen-rationalen Funktionen

Level 1 - Grundlagen - Blatt 1

c) Der Graph von f hat eine Polstelle ohne Vorzeichenwechsel bei $x_1 = -1$ und $x_2 = 2$ bedeutet $(x + 1)^2 \cdot (x - 2)^2$ im Nenner des Funktionsterms.

> Für $x \to \pm \infty$ ist die Asymptote y = 0.5x - 1 bedeutet, dass 0.5x - 1 Glied des Funktionsterms ist.

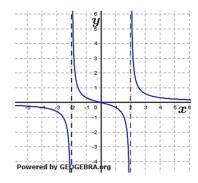
$$f(x) = \frac{1}{(x+1)^2 \cdot (x-2)^2} + 0.5x - 1.$$



d) Der Graph von f hat eine Polstelle bei $x_1 = -2$, ist punktsymmetrisch zum Ursprung bedeutet $x^2 - 4$ im Nenner des Funktionsterms.

Für $x \to \pm \infty$ ist die Asymptote y = 0 bedeutet ein xim Zähler des Funktionsterms.

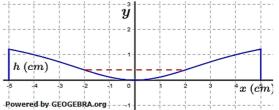
$$f(x) = \frac{x}{x^2 - 4}.$$



$$\frac{\text{L\"osung A6}}{f(x) = \frac{4x^2 + 32}{x^2 + 16} - 2}$$

Wassertiefe einer Schale bei Wasserbreite 40 cm:

Die Wasserbreite 40 cm liegt vor, wenn die Wasseroberfläche von den x-Koordinaten von x = -2 bis x = 2dargestellt wird. Wir benötigen somit den Powered by GEOGEBRA



Wert von
$$f(2)$$
.
 $f(2) = \frac{4 \cdot 2^2 + 32}{2^2 + 16} - 2 = \frac{48}{20} - 2 = 0,4$.

Die Wassertiefe beträgt dann 0,4 cm.

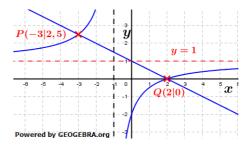
(a) by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

fgabenblatt Funktionsklassen zu gebrochen-rationalen Funktionen

Level 1 - Grundlagen - Blatt 1

Lösung A7

- Lösungsmenge an Hand der Grafik von $\frac{x-2}{1+x} = -\frac{1}{2}x + 1.$ $\mathbb{L} = \{x; y | (-3; 2,5)(2; 0)\}$
- Lösungsmenge an Hand der Grafik von $\mathbb{L} = \{\}$, da y = 1 waagrechte Asymptote ist.



© by Fit-in-Mathe-Online, mehr als 500,000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de