Differenzialrechnung

Aufgabenblatt Funktionsklassen zu linearen Funktionen mit Parameter

© by Fit-in-Mathe-Online.de

Level 3 - Expert - Blatt 4

Hinweis:

In diesem Aufgabenblatt befinden sich Aufgaben zu linearen Funktionen *mit Parameter* (Geradenscharen, Geradenbüschel).

Aufgabe A1

Gegeben ist für t > 0 die Funktion f_t mit $f_t(x) = tx - 4t - 1$; $x \in \mathbb{R}$. Zeige, dass für die Nullstelle x_t von f_t gilt: $x_t > 4$.

Aufgabe A2

 K_t ist das Schaubild von f_t mit $f_t(x) = 2tx + 4t - 1$; $x \in \mathbb{R}$.

- a) Bestimme die Koordinaten des gemeinsamen Punktes aller Schargeraden.
- b) Untersuche K_t auf Schnittpunkte mit den Koordinatenachsen.
- c) Zeichne K_t für $t \in \{1, -0, 5, 1, 5\}$.
- d) Bestimme t so, dass K_t auf der Geraden h mit $h(x) = \frac{3}{2}x$ senkrecht steht.
- e) Für welchen Wert von t schneidet K_t die Gerade g mit g(x) = -2x + 3 an der Stelle x = 1,5?

 Bestimme den Schnittpunkt.

Aufgabe A3

 K_t ist das Schaubild der linearen Funktion f_t mit $f_t(x) = -\frac{2}{t}x + 4 - \frac{1}{t}$; $x \in \mathbb{R}$, $t \in \mathbb{R}^*$.

- a) Untersuche K_t auf Schnittpunkte mit den Koordinatenachsen.
- b) Zeichne K_t für $t \in \{-2, -1, 2\}$.
- c) Bestimme t so, dass K_t eine Ursprungsgerade ist.
- d) Bestimme den gemeinsamen Punkt aller Schargeraden.

Aufgabe A4

Gegeben ist die lineare Funktion f_t mit $f_t(x) = \frac{t-2}{3}x + t$; $x, t \in \mathbb{R}$. K_t ist das Schaubild von f_t .

- a) Zeichne die Schargeraden K_t für $t \in \{0, 1, 3\}$.
- b) Berechne die Koordinaten des gemeinsamen Punktes aller Schargeraden.
- c) Welche Schargerade steht senkrecht auf der Geraden h mit $h(x) = \frac{4}{3}x$?
- d) Zeige: Keine der Schargeraden verläuft durch den Punkt T(-3|5).

Aufgabe A5

Bestimme die Gleichung der Geradenschar,

- a) deren Geraden die Steigung m = -3 haben.
- b) deren Geraden senkrecht auf der Geraden mit y = -2x + 5 stehen.
- c) deren Geraden durch den Punkt P(-5|4) verlaufen abernicht parallel zur y-Achse sind.
- d) deren Geraden parallel zur x-Achse verlaufen.
- e) deren Geraden die x-Achse in x = 2 schneiden.

© by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de

Aufgabenblatt Funktionsklassen zu linearen Funktionen mit Parameter

LÖSUNGEN by Fit-in-Mathe-Online.do

Level 3 - Expert - Blatt 4

Lösung A1

Nullstellen mit $f_t(x) = 0$

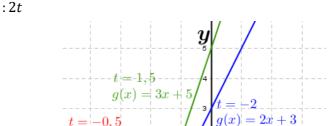
$$tx - 4t - 1 = 0$$

$$x_{t_0} = 4 + \frac{1}{t}$$

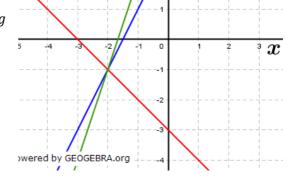
c)

Wegen Aufgabenstellung t > 0 ist somit stets $x_{t_0} > 4$.

Lösung A2


a) Wir stellen die gegebene Funktionsgleichung um in die Punkt-Steigungsform $f_t(x) = 2tx + 4t - 1 = 2t(x+2) - 1$. Aus der Punkt-Steigungsform lesen wir einen gemeinsamen Punkt ab: Die Geradenschar K_t hat den gemeinsamen Punkt P(-2|-1).

-4t;+1


g(x) =

b) Nullstellen mit $f_t(x) = 0$ 2tx + 4t - 1 = 0 2tx = -4t + 1 $x_0 = -2 + \frac{1}{2t}$ $N_t \left(-2 + \frac{1}{2t} \middle| 0\right)$ $S_{y_t}(0|4t - 1)$

Siehe Graphik rechts.

- d) Orthogonalitätsbedingung: $m_t \cdot m_h = -1$ $2t \cdot \frac{3}{2} = -1 \implies t = -\frac{1}{3}$ Für $t = -\frac{1}{3}$ steht f_t auf der Gerden g orthogonal.
- e) $g(1,5) = -2 \cdot 1,5 + 3 = 0$ Schnittpunkt P(1,5|0)Punktprobe: $f_t(1,5) = 0 = 2t \cdot 1,5 + 4t - 1$ $7t = 1 \Rightarrow t = \frac{1}{7}$ Für $t = \frac{1}{7}$ schneidet $f_{\frac{1}{7}}$ die Gerade g in P(1,5|0).

Lösung A3

- a) Nullstellen mit $f_t(x) = 0$ $-\frac{2}{t}x + 4 \frac{1}{t} = 0 \qquad | \qquad t$ $-2x + 4t 1 = 0 \qquad | \qquad -4t; +1$ $-2x = 1 4t \qquad | \qquad : (-2)$ $x_0 = 2t \frac{1}{2}$ $N_t \left(2t \frac{1}{2} \middle| 0\right)$ $S_{y_t} \left(0 \middle| 4 \frac{1}{t}\right)$
- © by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

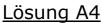
Aufgabenblatt Funktionsklassen zu linearen Funktionen mit Parameter

Losungen by Fit-in-Mathe-Online de

Level 3 – Expert – Blatt 4

b) Siehe Graphik rechts.

c) Eine Ursprungsgerade liegt vor, wenn das absolute Glied c der Funktionsgleichung Null ist.


$$4 - \frac{1}{t} = 0$$

$$4 = \frac{1}{t}$$

$$t = \frac{1}{4}$$

 $K_{\frac{1}{4}}$ ist eine Ursprungsgerade.

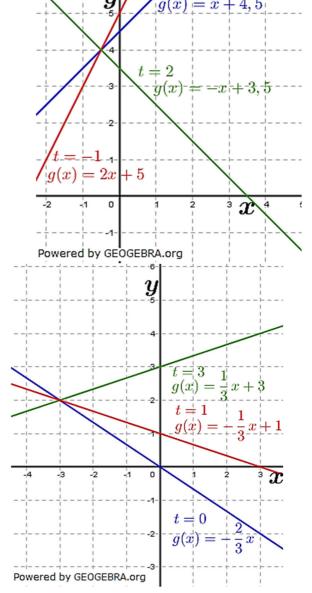
d) Umstellung von $f_t(x) = -\frac{2}{t}x + 4 - \frac{1}{t}$ in die Punkt-Steigungsformel: $f_t(x) = -\frac{2}{t}\left(x + \frac{1}{2}\right) + 4$ Der gemeinsame Schnittpunkt aller Schargeraden ist $S\left(-\frac{1}{2}\right|4\right)$.

a) Siehe Graphik rechts.

b) Umstellung von $f_t(x) = \frac{t-2}{3}x + t$ in die Punkt-Steigungsformel: $f_t(x) = \frac{t-2}{3}(x+3) + 2$

Der gemeinsame Punkt ist P(-3|2).

c) Bedingung für Senkrechte: $m_t \cdot m_h = -1$


 $\frac{t-2}{3} \cdot \frac{4}{3} = -1 \implies t = -\frac{1}{4}$ $f_{-\frac{1}{4}} \text{ steht senkrecht auf } h.$

d) Keine der Schargeraden verläuft durch den Punkt T(-3|5):

$$f_t(-3) = 5 = \frac{t-2}{3} \cdot (-3) + t$$

 \Rightarrow 5 = 2 Widerspruch.

Keine der Schargeraden verläuft durch den Punkt T(-3|5).

Lösung A5

a) Geradenschar mit der Steigung m = -3: $g_t(x) = -3x + t$

b) Geradenschar, die senkrecht auf der Geraden mit y=-2x+5 steht. $g_t(x)=\frac{1}{2}x+t$

c) Geradenschar durch den Punkt P(-5|4) verlaufen aber nicht parallel zur y-Achse:

 $g_t(x) = \frac{1}{t} \cdot (x+5) + 4; \ t \in \mathbb{R}^*$

d) Geradenschar parallel zur x-Achse: x = t

e) Geradenschar, die die x-Achse in x=2 schneidet: $g_t(x)=t(x-2)$

© by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de