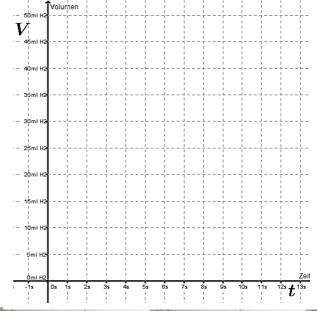

Level 1 - Grundlagen - Blatt 1

Aufgabe 1

Berechne für die im Schaubild dargestellte Funktion die Steigungen der Sekanten durch die gegebenen Punkte. Zeichne die Sekanten in verschiedenen Farben ein und beschrifte sie.


Aufgabe 2

Chemische Reaktionen können langsam oder schnell ablaufen. Bringt man z.B. Zink in Salzsäure, entsteht Wasserstoff. Die folgende Tabelle gibt die Menge des Wasserstoffs in Abhängigkeit von der Zeit an.

Zeit in s	2	4	6	8	10	12
Menge Wasserstoff in ml	21	30,5	35,5	40,5	42,5	43

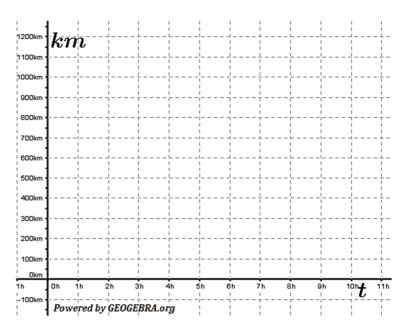
- a) Erstelle hierzu ein Diagramm. Was lässt sich über die Wasserstoff-Produktion aussagen?
- b) Trage die Steigungsdreiecke der nachfolgenden Intervalle in das Diagramm ein und berechne die mittleren Änderungsraten in diesen Intervallen:

[2; 4]; [4; 8] und [8; 12].

by Fit-In-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium

www.fit-in-mathe-online.de

Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de


Level 1 - Grundlagen - Blatt 1

Aufgabe 3

In der Tabelle findest du die zurückgelegte Strecke eines Autos über eine Fahrt von 10 Stunden.

- a) Trage die Messpunkte in das Koordinatensystem ein und verbinde die einzelnen Punkte. Überlege und berechne, zwischen welchen Zeitpunkten das Auto die höchste Geschwindigkeit hatte und wie hoch diese Geschwindigkeit war.
- b) Berechne auch die mittlere Geschwindigkeit über die gesamte Fahrtzeit und zeichne diese ebenfalls in das Koordinatensystem.

t in h	f(t) in km		
0	0		
2	150		
4	400		
6	800		
8	950		
10	1000		

Aufgabe 4

Ein Rückhaltebecken füllt sich nach anhaltenden Regenfällen. Das Wasservolumen V im Becken (in Mio. m^3) lässt sich in Abhängigkeit von der Zeit t (in Tagen) wie folgt beschreiben: $V(t) = -0.015t^3 + 0.26t^2 + 0.25$.

Bestimme die durchschnittliche Änderungsrate des Wasservolumens in den ersten drei Tagen. Erläutere den Wert.

Rechne den ermittelten Wert auch in kleinere Einheiten um.

