Abituraufgaben allg. Gymnasium Pflichtteil Analytische Geometrie III |
Aufgaben der Prüfungsjahre 2012 - 2018 BW |
Dokument mit 17 Aufgaben |
Aufgabe A6/12
Gegeben sind die Ebenen | |
und | |
. | |
Bestimmen Sie eine Gleichung der Schnittgeraden. |
Eine Frage stellen... |
Aufgabe A7/12
Gegeben sind die Punkte A(1|1|3) und die Ebene E: x1-x3-4=0. | |
a) | Welche besondere Lage hat E im Koordinatensystem? |
b) | Der Punkt A wird an der Ebene E gespiegelt. Bestimmen Sie die Koordinaten des Bildpunktes. |
Eine Frage stellen... |
Aufgabe A8/12
Gegeben sind eine Ebene E und ein Gerade g, die in E liegt. Beschreiben Sie ein Verfahren, mit dem man eine Gleichung einer Geraden h ermitteln kann, die orthogonal zu g ist und ebenfalls in E liegt. |
Eine Frage stellen... |
Aufgabe A6/13
Die Gerade g verläuft durch die Punkte A(1|-1|3) und B(2|-3|0). Die Ebene E wird von g orthogonal geschnitten und enthält den Punkt C(4|3|-8). Bestimmen Sie den Schnittpunkt S von g und E. Untersuchen Sie, ob S zwischen A und B liegt. |
Eine Frage stellen... |
Aufgabe A7/13
Gegeben sind die beiden Ebenen | |
E1: 2x1-2x2+x3 =-1 und | |
Zeigen Sie, dass die beiden Ebenen parallel zueinander sind. Die Ebene E3 ist parallel E1 und E2 und hat von beiden Ebenen denselben Abstand. Bestimmen Sie eine Gleichung der Ebene E3. |
Eine Frage stellen... |
Aufgabe A6/14
Gegeben sind die Ebenen E: x1+x2=4 und F: x1+x2+2x3=4. | |
a) | Stellen Sie die Ebenen E und F in einem gemeinsamen Koordinatensystem dar. Geben Sie eine Gleichung der Schnittgeraden von E und F an. |
b) | Die Ebene G ist parallel zur x1-Achse und schneidet die x1x2-Ebene in derselben Spurgeraden wie die Ebene F. Geben Sie eine Gleichung der Ebene G an. |
Eine Frage stellen... |
Aufgabe A7/14
Gegeben sind die die Punkte A(1|10|1), B(-3|13|1) und C(2|3|1). Die Gerade g verläuft durch A und B. Bestimmen Sie den Abstand des Punktes C von der Geraden g. |
Eine Frage stellen... |
Aufgabe A9/14
Gegeben sind der Mittelpunkt einer Kugel sowie eine Ebene. Die Kugel berührt diese Ebene. Beschreiben Sie, wie man den Kugelradius und den Berührpunkt bestimmen kann. |
Eine Frage stellen... |
Aufgabe A6/15
Gegeben sind die drei Punkte A(4|0|4), B(0|4|4) und C(6|6|2). | |
a) | Zeigen Sie, dass das Dreieck ABC gleichschenklig ist. |
b) | Bestimmen Sie die Koordinaten eines Punktes, der das Dreieck zu einem Parallelogramm ergänzt. Veranschaulichen Sie durch eine Skizze, wie viele solche Punkte es gibt. |
Eine Frage stellen... |
Aufgabe A7/15
Gegeben ist die Ebene E: 4x1+3x3=12. | |
a) | Stellen Sie E in einem Koordinatensystem dar. |
b) | Bestimmen Sie alle Punkte der x3-Achse, die von E den Abstand 3 haben. |
Eine Frage stellen... |
Aufgabe A6/16
Gegeben ist die Gerade . | |
a) | Untersuchen Sie, ob es einen Punkt auf g gibt, dessen drei Koordinaten identisch sind. |
b) | Die Gerade h verläuft durch Q(8|5|10) und schneidet g orthogonal. Bestimmen Sie eine Gleichung von h. |
Eine Frage stellen... |
Aufgabe A7/16
Gegeben ist die Ebene E: 4x1+4x2+7x3=28. Es gibt zwei zu E parallele Ebenen F und G, die vom Ursprung den Abstand 2 haben. Bestimmen Sie jeweils eine Gleichung von F und G. |
Eine Frage stellen... |
Aufgabe A9/16
Von zwei Kugeln K1 und K2 sind die Mittelpunkte M1 und M2 sowie die Radien r1 und r2 bekannt. Die Kugeln berühren einander von außen im Punkt B. Beschreiben Sie ein Verfahren, mit dem man B bestimmen kann. |
Eine Frage stellen... |
Aufgabe A5/17
Gegeben sind die Ebene E: x1+3x2=6 und . | |
a) | Stellen Sie die Ebene E in einem Koordinatensystem dar. |
b) | Bestimmen Sie eine Gleichung der Schnittgeraden von E und F. |
c) | Ermitteln Sie eine Gleichung einer Geraden, die in E enthalten ist und mit F keinen Punkt gemeinsam hat. |
Eine Frage stellen... |
Aufgabe A6/17
Gegeben sind eine Ebenen E, ein Punkt P in E sowie ein weiterer Punkt S, der nicht in E liegt. Der Punkt S ist die Spitze eines geraden Kegels, dessen Grundkreis in E liegt und durch P verläuft. Die Strecke bildet den Durchmesser des Grundkreises. Beschreiben Sie ein Verfahren, mit dem man die Koordinaten des Punktes Q bestimmen kann. |
Eine Frage stellen... |
Aufgabe A5/18
Gegeben sind die Ebenen E: 2x1+2x2+x3=5 und die Gerade . | |
a) | Bestimmen Sie die Werte für a und b. |
b) | Geben Sie eine Gleichung h einer Geraden an, die ebenfalls in E liegt und senkrecht zur Geraden g verläuft. |
Eine Frage stellen... |
Aufgabe A6/18
Gegeben ist die Ebene E: x1+2x2-x3=4. | |
a) | Begründen Sie, dass die Spurpunkte von E die Ecken eines gleichschenkligen Dreiecks bilden. |
b) |
Die Ebene schneidet die Ebene E. Bestimmen Sie die Gleichung der Schnittgeraden s von E und F. |
Eine Frage stellen... |
Du befindest dich hier: |
Abituraufgaben allg. Gymnasium Pflichtteil Analytische Geometrie III |
- Geschrieben von Meinolf Müller Meinolf Müller
- Zuletzt aktualisiert: 17. Juli 2021 17. Juli 2021