![]() |
Potenzieren und Radizieren von Wurzeln - Level 2 - Fortgeschritten - Blatt 1 |
Dokument mit 33 Aufgaben |
Aufgabe A1 (9 Teilaufgaben)
Vereinfache ohne gerundete Zahlen. | |||
a) | \(\mathsf {\left (\sqrt{a+b} \right )^4} \) | = | _______________________ |
b) | \(\mathsf {\left (\sqrt{5-x} \right )^7;\; x \le 5} \) | = | _______________________ |
c) | \(\mathsf {\left (\frac {1}{\sqrt{2}} \right )^3} \) | = | _______________________ |
d) | \(\mathsf {\left (\sqrt{10x} \right )^5} \) | = | _______________________ |
e) | \(\mathsf {\left (\sqrt{\frac {1}{7}a} \right )^4} \) | = | _______________________ |
f) | \(\mathsf {\left (\sqrt{3} \cdot \sqrt{\frac {1}{9}} \right )^{10}} \) | = | _______________________ |
g) | \(\mathsf {\left (\sqrt{\frac {5ab}{c}} \right )^5;\;c \ne 0;\; \frac {ab}{c} \ge 0} \) | = | _______________________ |
h) | \(\mathsf {\left (\sqrt{\frac {6t^2}{2t}} \right )^8;\;t \ne 0} \) | = | _______________________ |
i) | \(\mathsf {\left (\frac {x^2}{\sqrt{2^2}} \right )^9} \) | = | _______________________ |
![]() |
Aufgabe A2 (9 Teilaufgaben)
Vereinfache ohne Verwendung eines Taschenrechners. | |||
a) | \(\mathsf {\left (\frac {x}{\sqrt{3}} \right )^3} \) | = | _______________________ |
b) | \(\mathsf {\left (\frac {y}{\sqrt{5}} \right )^8} \) | = | _______________________ |
c) | \(\mathsf {\left ( \frac {z}{\sqrt{2}} \right )^{13}} \) | = | _______________________ |
d) | \(\mathsf {\left (\frac {2}{\sqrt{a}} \right )^6;\;a \in \mathbb{R}} \) | = | _______________________ |
e) | \(\mathsf {\left (\frac { \sqrt{a^2b}}{c} \right )^4;\;a \in \mathbb{R};\;b\ge 0;\; c \ne 0} \) | = | _______________________ |
f) | \(\mathsf {\left (\frac { \sqrt{a^2b}}{c} \right )^3;\;a \in \mathbb{R};\;b\ge 0;\; c \ne 0} \) | = | _______________________ |
g) | \(\mathsf {\left (\frac {\sqrt{x^3}}{\sqrt{y^3}} \right )^5;\;x\ge 0;\; y>0} \) | = | _______________________ |
h) | \(\mathsf {\left (\frac {x}{\sqrt{2x}} \right )^3;\;x > 0} \) | = | _______________________ |
i) | \(\mathsf {\left (\frac {x}{\sqrt{2x}} \right )^6;\;x > 0} \) | = | _______________________ |
![]() |
Aufgabe A3 (7 Teilaufgaben)
Berechne und vereinfache. | |||
a) | \(\mathsf {\left (\frac {\sqrt{3x^3y^5}}{xy} \right )^5 ;\;x > 0;\;\;y > 0} \) | = | _______________________ |
b) | \(\mathsf {\left (\frac {\sqrt{5ab^2}}{5^4a^4} \right )^8;\;b \in \mathbb{R};\;a > 0} \) | = | _______________________ |
c) | \(\mathsf {\left (\frac {\sqrt{5ab^2}}{125a^3} \right )^7;\;b \in \mathbb{R};\;a > 0} \) | = | _______________________ |
d) | \(\mathsf {\frac {(\sqrt{a+b})^3}{(\sqrt{a-b})^3};\;a+b \ge 0;\; a-b > 0} \) | = | _______________________ |
e) | \(\mathsf {\frac {(\sqrt{a-b})^4}{(\sqrt{a+b})^4};\;a-b \ge 0;\; a+b > 0} \) | = | _______________________ |
f) | \(\mathsf {\left (\sqrt{\frac {2}{3x}} \right )^4;x > 0} \) | = | _______________________ |
g) | \(\mathsf {\left (\sqrt[3]{\frac {2}{3x}} \right )^6;x > 0} \) | = | _______________________ |
![]() |
Aufgabe A4 (8 Teilaufgaben)
Berechne und vereinfache. | |||
a) | \(\mathsf {\frac {1}{\left (\sqrt[4]{4} \right )^2}} \) | = | _______________________ |
b) | \(\mathsf {\frac {5}{\left (\sqrt[5]{7} \right )^5}} \) | = | _______________________ |
c) | \(\mathsf {\frac {3}{\left (\sqrt[6]{9} \right )^6}} \) | = | _______________________ |
d) | \(\mathsf {\frac {\left (\sqrt[3]{b} \right )^4} {\left (\sqrt[5]{a} \right )^6};\; a \ne 0} \) | = | _______________________ |
e) | \(\mathsf {\frac {b}{\left (\sqrt[4]{b} \right )^4};\;b \ne 0} \) | = | _______________________ |
f) | \(\mathsf {\left (\sqrt[3]{x} \right )^5 \cdot \left (\sqrt[5]{x} \right )^3; x \ge 0} \) | = | _______________________ |
g) | \(\mathsf {\left (\sqrt[3]{y^2} \right )^3 : 2y; y \ne 0} \) | = | _______________________ |
h) | \(\mathsf {\left (\sqrt[5]{z^2} \right )^3 \cdot z^2} \) | = | _______________________ |
![]() |
Du befindest dich hier: |
Potenzieren und Radizieren von Wurzeln Level 2 - Fortgeschritten - Blatt 1 |



- Geschrieben von Meinolf Müller Meinolf Müller
- Zuletzt aktualisiert: 27. September 2020 27. September 2020