![]() |
Vermischte Aufgaben mit Wurzeln - Aufgabenblatt 1 |
Dokument mit 35 Aufgaben |
Aufgabe A1 (9 Teilaufgaben)
Vereinfache so weit wie möglich. | |||
a) | \(\mathsf {(\sqrt{2a})^2 } \) | = | _______________________ |
b) | \(\mathsf {(\sqrt{-a}^2) } \) | = | _______________________ |
c) | \(\mathsf {(-\sqrt{b})^2 } \) | = | _______________________ |
d) | \(\mathsf {\sqrt{a^4} } \) | = | _______________________ |
e) | \(\mathsf {\left (\sqrt{\frac {1}{a}}\right )^2 } \) | = | _______________________ |
f) | \(\mathsf {\sqrt{\left (\frac {1}{a-2}\right )^2} } \) | = | _______________________ |
g) | \(\mathsf {\sqrt{\frac {36}{169}}} \) | = | _______________________ |
h) | \(\mathsf {\sqrt{\frac {45x}{y^2}}} \) | = | _______________________ |
![]() |
Aufgabe A2 (9 Teilaufgaben)
Vereinfache so weit wie möglich. | |||
a) | \(\mathsf {(\sqrt{a+5})^2 } \) | = | _______________________ |
b) | \(\mathsf {\sqrt{a-b}^2 } \) | = | _______________________ |
c) | \(\mathsf {\sqrt{6y} \cdot \sqrt {24}{xy} } \) | = | _______________________ |
d) | \(\mathsf {\sqrt{36r^4s^2} } \) | = | _______________________ |
e) | \(\mathsf {\sqrt{75z^3} : \sqrt{3z} } \) | = | _______________________ |
f) | \(\mathsf {\sqrt{108} } \) | = | _______________________ |
g) | \(\mathsf {\sqrt{28x^2y}} \) | = | _______________________ |
h) | \(\mathsf {\sqrt{5x^2 +10yx+5y^2}} \) | = | _______________________ |
![]() |
Aufgabe A3 (9 Teilaufgaben)
Vereinfache so weit wie möglich. | |||
a) | \(\mathsf {\frac {\sqrt{75x^3y^5}}{\sqrt{32z}} \cdot \frac {\sqrt{z^7}}{\sqrt{6xy^3}}} \) | = | _______________________ |
b) | \(\mathsf {\frac {\sqrt{x^5}}{\sqrt{6ab^3}} \cdot \frac {\sqrt{75a^3b^5}}{\sqrt{32x}}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt{\frac {a}{b}} : \sqrt {\frac {b}{a}} } \) | = | _______________________ |
d) | \(\mathsf {\sqrt{\frac {x}{y}} : \sqrt {\frac {x}{y}} } \) | = | _______________________ |
e) | \(\mathsf {\sqrt{\frac {108}{a^2}} : \sqrt {\frac {25x^2}{3}} } \) | = | _______________________ |
f) | \(\mathsf {\sqrt{\frac {3}{25x^2}} : \sqrt {\frac {4a^2}{108}} } \) | = | _______________________ |
g) | \(\mathsf {(\sqrt{27}-2\sqrt{3}) \cdot \sqrt{12}} \) | = | _______________________ |
h) | \(\mathsf {\sqrt{ab} \cdot (\sqrt{a^3b}+\sqrt{ab^3})} \) | = | _______________________ |
![]() |
Aufgabe A4 (12 Teilaufgaben)
Vereinfache so weit wie möglich. | |||
a) | \(\mathsf {(3-2\sqrt{11})(3+2\sqrt{11}) } \) | = | _______________________ |
b) | \(\mathsf {(\sqrt{2x}-2y)^2 } \) | = | _______________________ |
c) | \(\mathsf {\sqrt{\frac {3}{25x^2}}:\sqrt{\frac {a^2}{108}} } \) | = | _______________________ |
d) | \(\mathsf {(8\sqrt{2x}-2\sqrt{8})^2 } \) | = | _______________________ |
e) | \(\mathsf {(3\sqrt{5}+2\sqrt{7}) \cdot (3\sqrt{5}-2\sqrt{7}) } \) | = | _______________________ |
f) | \(\mathsf {3\sqrt{2} \cdot (8\sqrt{2}-15\sqrt{6}+4\sqrt{24}) } \) | = | _______________________ |
g) | \(\mathsf {\sqrt{x^3y^3} \cdot (\sqrt{xy}-\sqrt{xy^2}) } \) | = | _______________________ |
h) | \(\mathsf {\frac {a}{\sqrt{b}}+\frac {b}{\sqrt{a}} } \) | = | _______________________ |
i) | \(\mathsf {\frac {5}{\sqrt{3}}-\frac {2}{\sqrt{2}} } \) | = | _______________________ |
j) | \(\mathsf {(\sqrt{a+x}+\sqrt{a-x}) \cdot (\sqrt{a+x}-\sqrt{a-x}) } \) | = | _______________________ |
k) | \(\mathsf {(\sqrt{a-x}-\sqrt{a+x}) \cdot (\sqrt{a-x}+\sqrt{a+x}) } \) | = | _______________________ |
![]() |
Du befindest dich hier: |
Vermischte Aufgaben mit Wurzeln - Aufgabenblatt 1 |



- Geschrieben von Meinolf Müller Meinolf Müller
- Zuletzt aktualisiert: 27. September 2020 27. September 2020