![]() |
Potenzieren und Radizieren von Wurzeln - Level 1 - Grundlagen - Blatt 2 |
Dokument mit 33 Aufgaben |
Aufgabe A1 (9 Teilaufgaben)
Vereinfache ohne gerundete Zahlen. | |||
a) | \(\mathsf {\sqrt{\sqrt{16}}} \) | = | _______________________ |
b) | \(\mathsf {\sqrt{\sqrt{81}}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt{\sqrt{625}}} \) | = | _______________________ |
d) | \(\mathsf {\sqrt{\sqrt{10}}} \) | = | _______________________ |
e) | \(\mathsf {\sqrt{\sqrt{7}}} \) | = | _______________________ |
f) | \(\mathsf {\sqrt{\sqrt{55}}} \) | = | _______________________ |
g) | \(\mathsf {\sqrt{\sqrt{5}}} \) | = | _______________________ |
h) | \(\mathsf {\sqrt{\sqrt{6}}} \) | = | _______________________ |
i) | \(\mathsf {\sqrt{\sqrt{2}}} \) | = | _______________________ |
![]() |
Aufgabe A2 (9 Teilaufgaben)
Vereinfache ohne Verwendung eines Taschenrechners. | |||
a) | \(\mathsf {\sqrt{\sqrt{\sqrt{3}}}} \) | = | _______________________ |
b) | \(\mathsf {\sqrt{\sqrt{\sqrt{5}}}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt{\sqrt{\sqrt{2}}}} \) | = | _______________________ |
d) | \(\mathsf {\sqrt{\sqrt{a}}} \) | = | _______________________ |
e) | \(\mathsf {\sqrt{\sqrt{a^2b}};\;a \in \mathbb{R};\;b \ge 0} \) | = | _______________________ |
f) | \(\mathsf {\sqrt{\sqrt{(a^2b)^3}};\;a \in \mathbb{R};\;b \ge 0} \) | = | _______________________ |
g) | \(\mathsf {\sqrt{\sqrt{x^3}};\;x \ge 0} \) | = | _______________________ |
h) | \(\mathsf {\sqrt{\sqrt{(2x)^3}};\;x \ge 0} \) | = | _______________________ |
i) | \(\mathsf {\sqrt{\sqrt{(2x)^6}};\;x \ge 0} \) | = | _______________________ |
![]() |
Aufgabe A3 (7 Teilaufgaben)
Berechne und vereinfache. | |||
a) | \(\mathsf {\sqrt {\sqrt{3x^3y^5}} ;\;x\ge 0;\;\;y\ge 0} \) | = | _______________________ |
b) | \(\mathsf {\sqrt {\sqrt{81x^6y^{10}}}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt { \sqrt {\sqrt{5ab^2} ^7}};\;b \in \mathbb{R};\;a\ge 0} \) | = | _______________________ |
d) | \(\mathsf {\sqrt {\sqrt {\left (a+b \right )^4 } }} \) | = | _______________________ |
e) | \(\mathsf {\sqrt {\sqrt {\left (a-b \right )^8 } }} \) | = | _______________________ |
f) | \(\mathsf {\sqrt { \sqrt{2}^4}} \) | = | _______________________ |
g) | \(\mathsf {\sqrt {\sqrt[3]{2^5} }} \) | = | _______________________ |
![]() |
Aufgabe A4 (8 Teilaufgaben)
Vereinfache ohne Verwendung eines Taschenrechners. | |||
a) | \(\mathsf {\sqrt { \sqrt { \sqrt{4^4} }}} \) | = | _______________________ |
b) | \(\mathsf {\sqrt { \sqrt[3]{ \sqrt[4]{7^5} }}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt[5]{ \sqrt[6]{9^6} }} \) | = | _______________________ |
d) | \(\mathsf {\sqrt[4]{ \sqrt[5]{a^3} }} \) | = | _______________________ |
e) | \(\mathsf {\sqrt[4]{ \sqrt[5]{b^{20}} }} \) | = | _______________________ |
f) | \(\mathsf {\sqrt{ \sqrt[3]{x^5} }} \) | = | _______________________ |
g) | \(\mathsf {\sqrt[3]{ \sqrt[3]{(y^3)^3} }} \) | = | _______________________ |
h) | \(\mathsf {\sqrt[4]{ \sqrt[5]{z^2}^3 }} \) | = | _______________________ |
![]() |
Du befindest dich hier: |
Potenzieren und Radizieren von Wurzeln Level 1 - Grundlagen - Blatt 2 |



- Geschrieben von Meinolf Müller Meinolf Müller
- Zuletzt aktualisiert: 27. September 2020 27. September 2020