![]() |
Potenzieren und Radizieren von Wurzeln - Level 2 - Fortgeschritten - Blatt 2 |
Dokument mit 33 Aufgaben |
Aufgabe A1 (9 Teilaufgaben)
Vereinfache die folgenden Terme. | |||
a) | \(\mathsf {\sqrt {\sqrt{16} }} \) | = | _______________________ |
b) | \(\mathsf {\sqrt[3] {\sqrt{216} }} \) | = | _______________________ |
c) | \(\mathsf {\sqrt {\sqrt[3]{4096} }} \) | = | _______________________ |
d) | \(\mathsf {\sqrt {\sqrt[3]{x^6} }} \) | = | _______________________ |
e) | \(\mathsf {\sqrt[3] {\sqrt{z^3} }} \) | = | _______________________ |
f) | \(\mathsf {\sqrt[4] {\sqrt[3]{a^8} }} \) | = | _______________________ |
g) | \(\mathsf {\sqrt[3] {\sqrt{x^4y^6} }} \) | = | _______________________ |
h) | \(\mathsf {\sqrt[3] {\sqrt[4] {81x^{12}} }} \) | = | _______________________ |
i) | \(\mathsf {\sqrt[4] {\sqrt[3] {625x^8} }} \) | = | _______________________ |
![]() |
Aufgabe A2 (9 Teilaufgaben)
Vereinfache die folgenden Terme. | |||
a) | \(\mathsf {\sqrt {x^3 \cdot {\sqrt[3] {x \cdot \sqrt[4]{x}}}}\cdot \sqrt[3]{ \sqrt {x^4 \cdot \sqrt[4]{x^3}}}} \) | = | _______________________ |
b) | \(\mathsf {\sqrt {x^3 {\sqrt {x^3}}} \cdot \sqrt{ \sqrt[3] {x^2 }}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt[4] { {\sqrt[3] {x^4}}} \cdot \sqrt[3]{ \sqrt[4] {x^3 }} \cdot \sqrt[3]{x^4} \cdot \sqrt[12]{x}} \) | = | _______________________ |
d) | \(\mathsf {\sqrt[9] { {\sqrt[5] {x^{11}}}} \cdot \sqrt[3]{ \sqrt[15] {x^{19} }} : \sqrt[3]{x}} \) | = | _______________________ |
e) | \(\mathsf {\sqrt[4] {625a^3 \sqrt[3]{4^6a^2 \cdot \sqrt {a^4}}}} \) | = | _______________________ |
f) | \(\mathsf {\sqrt {\sqrt{(a^2b)^3 } };\;a\in \mathbb{R};\;b \ge 0} \) | = | _______________________ |
g) | \(\mathsf {\sqrt[9] {a^6 \cdot \sqrt[4]{a^{12}} }+\sqrt {\sqrt[6]{b^{10}}} \cdot \sqrt[3] {\sqrt[4] {b^2}}} \) | = | _______________________ |
h) | \(\mathsf {\sqrt {\frac {1}{\sqrt {(2x)^3}}};\;x>0} \) | = | _______________________ |
i) | \(\mathsf {\sqrt {\frac {1}{\sqrt {(2x)^6}}};\;x>0} \) | = | _______________________ |
![]() |
Aufgabe A3 (7 Teilaufgaben)
Berechne und vereinfache. | |||
a) | \(\mathsf {\sqrt {\frac {\sqrt{3x^3}}{\sqrt{y^5}}} ;\;x\ge 0;\;\;y\ge 0} \) | = | _______________________ |
b) | \(\mathsf {\sqrt {\sqrt{81x^6y^{10}}}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt {\frac {1}{\sqrt{ \sqrt {5ab^2}^7}}} ;\;b \in \mathbb{R}^* ;\;a\ge 0} \) | = | _______________________ |
d) | \(\mathsf {\sqrt {\frac {\sqrt {(a+b)^4}}{\sqrt{(a-b)^4 }}} ;\;a-b \ne 0} \) | = | _______________________ |
e) | \(\mathsf {\sqrt {\frac {\sqrt {(a-b)^8}}{\sqrt{(a+b)^8 }}} ;\;a+b \ne 0} \) | = | _______________________ |
f) | \(\mathsf {\sqrt { \frac {\sqrt{a}^4}{\sqrt {b}^2}};\;b\ne 0} \) | = | _______________________ |
g) | \(\mathsf {\frac {1}{\sqrt {\sqrt[3]{2^5}}}} \) | = | _______________________ |
![]() |
Aufgabe A4 (8 Teilaufgaben)
Berechne jund vereinfache. | |||
a) | \(\mathsf {\frac {1}{\sqrt { \sqrt { \sqrt{4^4} }}}} \) | = | _______________________ |
b) | \(\mathsf {\frac {1}{\sqrt { \sqrt[3]{ \sqrt[4]{7^5} }}}} \) | = | _______________________ |
c) | \(\mathsf {\frac {1}{\sqrt[5]{ \sqrt[6]{9^6} }}} \) | = | _______________________ |
d) | \(\mathsf {\frac {a}{\sqrt[4]{ \sqrt[5]{a^3} }};\;a > 0} \) | = | _______________________ |
e) | \(\mathsf {\frac {b^{10}}{\sqrt[4]{ \sqrt[5]{b^{20}} }};\;b\ne 0} \) | = | _______________________ |
f) | \(\mathsf {\frac {\sqrt[4]{x^4}}{\sqrt{ \sqrt[3]{x^5} }};\;x \ne 0} \) | = | _______________________ |
g) | \(\mathsf {\frac {1}{\sqrt[3]{ \sqrt[3]{(y^3)^3}}};\;y>0} \) | = | _______________________ |
h) | \(\mathsf {\frac {1}{\sqrt[4]{ \sqrt[5]{z^2}^3 }};\;z \ne 0} \) | = | _______________________ |
![]() |
Du befindest dich hier: |
Potenzieren und Radizieren von Wurzeln Level 2 - Fortgeschritten - Blatt 2 |



- Geschrieben von Meinolf Müller Meinolf Müller
- Zuletzt aktualisiert: 27. September 2020 27. September 2020