![]() |
Vermischte Aufgaben mit Wurzeln - Aufgabenblatt 3 |
Dokument mit 52 Aufgaben |
Aufgabe A1 (8Teilaufgaben)
Vereinfache die nachfolgenden Terme und berechne ohne gerundete Werte. | |||
a) | \(\mathsf {(\sqrt{15x})^2} \) | = | _______________________ |
b) | \(\mathsf {\sqrt{(7a)^2}} \) | = | _______________________ |
c) | \(\mathsf {(\sqrt{24a^3})^2} \) | = | _______________________ |
d) | \(\mathsf {(\sqrt{a^2y^3})^2} \) | = | _______________________ |
e) | \(\mathsf {\sqrt{x^2}} \) | = | _______________________ |
f) | \(\mathsf {\sqrt{3m^2}} \) | = | _______________________ |
g) | \(\mathsf {\sqrt{(x-2y)^2}} \) | = | _______________________ |
h) | \(\mathsf {\sqrt{(2m+3n)^2}} \) | = | _______________________ |
![]() |
Aufgabe A2 (18 Teilaufgaben)
Vereinfache die nachfolgenden Terme und berechne ohne gerundete Werte. | |||
a) | \(\mathsf {(\sqrt{12}+ \sqrt{3}) \sqrt{3}} \) | = | _______________________ |
b) | \(\mathsf {\sqrt{2}(\sqrt{18}+ \sqrt{32}) } \) | = | _______________________ |
c) | \(\mathsf {\sqrt{5}(\sqrt{5}+ \sqrt{125}) } \) | = | _______________________ |
d) | \(\mathsf {\sqrt{6}(\sqrt{54}+ \sqrt{6}) } \) | = | _______________________ |
e) | \(\mathsf {(\sqrt{32x}+ \sqrt{6x}) \sqrt{0,5x}} \) | = | _______________________ |
f) | \(\mathsf {\sqrt{0,2a}(\sqrt{5a}- \sqrt{80a}) } \) | = | _______________________ |
g) | \(\mathsf {(3+\sqrt{5})(3-\sqrt{5})} \) | = | _______________________ |
h) | \(\mathsf {(\sqrt{8}-\sqrt{3})(\sqrt{8}+\sqrt{3})} \) | = | _______________________ |
i) | \(\mathsf {(\sqrt{2}+\sqrt{7})(\sqrt{2}-\sqrt{7})} \) | = | _______________________ |
j) | \(\mathsf {(12+\sqrt{3})(12-\sqrt{3})} \) | = | _______________________ |
k) | \(\mathsf {(\sqrt{x^3}-\sqrt{2y})(\sqrt{x^3}+\sqrt{2y})} \) | = | _______________________ |
l) | \(\mathsf {(\sqrt{5x^5}+\sqrt{2})(\sqrt{5x^5}-\sqrt{2})} \) | = | _______________________ |
m) | \(\mathsf {(\sqrt{a}+\sqrt{b})^2} \) | = | _______________________ |
n) | \(\mathsf {(3-\sqrt{2})^2} \) | = | _______________________ |
m) | \(\mathsf {(\sqrt{8}+\sqrt{3})^2} \) | = | _______________________ |
o) | \(\mathsf {(\sqrt{5}-\sqrt{b})^2} \) | = | _______________________ |
p) | \(\mathsf {(3\sqrt{x}+2\sqrt{y})^2} \) | = | _______________________ |
![]() |
Aufgabe A3 (12 Teilaufgaben)
Vereinfache. | |||
a) | \(\mathsf {\sqrt[3]{25} \cdot \sqrt[3]{5}} \) | = | _______________________ |
b) | \(\mathsf {\sqrt[8]{2} \cdot \sqrt[8]{128}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt[4]{4a^3} \cdot \sqrt[4]{4a}} \) | = | _______________________ |
d) | \(\mathsf {\sqrt[3]{5x^2y} \cdot \sqrt[3]{25xy^2}} \) | = | _______________________ |
e) | \(\mathsf {\sqrt[6]{6^2x^2y^3z} \cdot \sqrt[6]{6^4x^4y^3z^5}} \) | = | _______________________ |
f) | \(\mathsf {\sqrt[3]{x+y} \cdot \sqrt[3]{(x+y)^2}} \) | = | _______________________ |
g) | \(\mathsf {\sqrt[5]{x^3} \cdot \sqrt[5]{x^2}} \) | = | _______________________ |
h) | \(\mathsf {\sqrt[8]{a^5} \cdot \sqrt[8]{a^3}} \) | = | _______________________ |
i) | \(\mathsf {\sqrt[5]{4a^3} \cdot \sqrt[5]{8a^2}} \) | = | _______________________ |
j) | \(\mathsf {\sqrt[3]{3a} \cdot \sqrt[3]{9a^2}} \) | = | _______________________ |
k) | \(\mathsf {\sqrt[6]{x^2y^3z^5} \cdot \sqrt[6]{x^4y^3z}} \) | = | _______________________ |
l) | \(\mathsf {\sqrt[4]{27a^3b} \cdot \sqrt[4]{3ab^3}} \) | = | _______________________ |
![]() |
Aufgabe A4 (14 Teilaufgaben)
Vereinfache. | |||
a) | \(\mathsf {\sqrt[5]{x^3} \cdot \sqrt[5]{x^2}} \) | = | _______________________ |
b) | \(\mathsf {\sqrt[4]{25b} \cdot \sqrt[4]{25b}} \) | = | _______________________ |
c) | \(\mathsf {\sqrt[4]{d^3} \cdot \sqrt[4]{d}} \) | = | _______________________ |
d) | \(\mathsf {\sqrt[7]{x^4y^3z^5} \cdot \sqrt[7]{x^3y^4z^2}} \) | = | _______________________ |
e) | \(\mathsf {\sqrt[6]{xy^2z^2} \cdot \sqrt[6]{x^2yz}} \) | = | _______________________ |
f) | \(\mathsf {\sqrt[10]{p^2q^3r^2} \cdot \sqrt[10]{p^3q^2r^3}} \) | = | _______________________ |
g) | \(\mathsf {\frac {\sqrt[3]{112}}{\sqrt[3]{14}}} \) | = | _______________________ |
h) | \(\mathsf {\frac {\sqrt[3]{54}}{\sqrt[3]{2}}} \) | = | _______________________ |
i) | \(\mathsf {\frac {\sqrt[3]{108}}{\sqrt[3]{4}}} \) | = | _______________________ |
j) | \(\mathsf {\frac {\sqrt[5]{64}}{\sqrt[5]{2}}} \) | = | _______________________ |
k) | \(\mathsf {\frac {\sqrt[4]{2}}{\sqrt[4]{32}}} \) | = | _______________________ |
l) | \(\mathsf {\frac {\sqrt[4]{729}}{\sqrt[4]{9}}} \) | = | _______________________ |
m) | \(\mathsf {\frac {\sqrt[3]{9,6}}{\sqrt[3]{1,2}}} \) | = | _______________________ |
n) | \(\mathsf {\frac {\sqrt[6]{2}}{\sqrt[6]{128}}} \) | = | _______________________ |
![]() |
Du befindest dich hier: |
Vermischte Aufgaben mit Wurzeln - Aufgabenblatt 3 |



- Geschrieben von Meinolf Müller Meinolf Müller
- Zuletzt aktualisiert: 27. September 2020 27. September 2020